IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> C++知识库 -> C语言多线程教程(pthread)(线程创建pthread_t,指定线程run方法pthread_create,加mutex锁,解锁,伪共享 false sharing【假共享】) -> 正文阅读

[C++知识库]C语言多线程教程(pthread)(线程创建pthread_t,指定线程run方法pthread_create,加mutex锁,解锁,伪共享 false sharing【假共享】)

[C语言]多线程程序入门教程

thread线程和process进程:前者共享内存,后者不共享

查看pthread_create()函数文档

man pthread_create
PTHREAD_CREATE(3)                                                                      Linux Programmer's Manual                                                                     PTHREAD_CREATE(3)

NAME
       pthread_create - create a new thread

SYNOPSIS
       #include <pthread.h>

       int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
                          void *(*start_routine) (void *), void *arg);

       Compile and link with -pthread.

DESCRIPTION
       The pthread_create() function starts a new thread in the calling process.  The new thread starts execution by invoking start_routine(); arg is passed as the sole argument of start_routine().

       The new thread terminates in one of the following ways:

       * It calls pthread_exit(3), specifying an exit status value that is available to another thread in the same process that calls pthread_join(3).

       * It returns from start_routine().  This is equivalent to calling pthread_exit(3) with the value supplied in the return statement.

       * It is canceled (see pthread_cancel(3)).

       * Any of the threads in the process calls exit(3), or the main thread performs a return from main().  This causes the termination of all threads in the process.

       The  attr  argument  points  to  a  pthread_attr_t  structure  whose  contents are used at thread creation time to determine attributes for the new thread; this structure is initialized using
       pthread_attr_init(3) and related functions.  If attr is NULL, then the thread is created with default attributes.

       Before returning, a successful call to pthread_create() stores the ID of the new thread in the buffer pointed to by thread; this identifier is used to refer to the thread in subsequent  calls
       to other pthreads functions.

       The  new  thread  inherits  a copy of the creating thread's signal mask (pthread_sigmask(3)).  The set of pending signals for the new thread is empty (sigpending(2)).  The new thread does not
       inherit the creating thread's alternate signal stack (sigaltstack(2)).

       The new thread inherits the calling thread's floating-point environment (fenv(3)).

       The initial value of the new thread's CPU-time clock is 0 (see pthread_getcpuclockid(3)).

   Linux-specific details
       The new thread inherits copies of the calling thread's capability sets (see capabilities(7)) and CPU affinity mask (see sched_setaffinity(2)).

RETURN VALUE
       On success, pthread_create() returns 0; on error, it returns an error number, and the contents of *thread are undefined.

ERRORS
       EAGAIN Insufficient resources to create another thread.

       EAGAIN A system-imposed limit on the number of threads was encountered.  There are a number of limits that may trigger this error: the RLIMIT_NPROC soft resource limit (set via setrlimit(2)),
              which  limits  the number of processes and threads for a real user ID, was reached; the kernel's system-wide limit on the number of processes and threads, /proc/sys/kernel/threads-max,
              was reached (see proc(5)); or the maximum number of PIDs, /proc/sys/kernel/pid_max, was reached (see proc(5)).

       EINVAL Invalid settings in attr.

       EPERM  No permission to set the scheduling policy and parameters specified in attr.

ATTRIBUTES
       For an explanation of the terms used in this section, see attributes(7).

       ┌─────────────────┬───────────────┬─────────┐
       │Interface        │ Attribute     │ Value   │
       ├─────────────────┼───────────────┼─────────┤
       │pthread_create() │ Thread safety │ MT-Safe │
       └─────────────────┴───────────────┴─────────┘

CONFORMING TO
       POSIX.1-2001, POSIX.1-2008.

NOTES
       See pthread_self(3) for further information on the thread ID returned in *thread by pthread_create().  Unless real-time scheduling policies are being employed, after a  call  to  pthread_cre‐
       ate(), it is indeterminate which thread—the caller or the new thread—will next execute.

       A thread may either be joinable or detached.  If a thread is joinable, then another thread can call pthread_join(3) to wait for the thread to terminate and fetch its exit status.  Only when a
       terminated joinable thread has been joined are the last of its resources released back to the system.  When a detached thread terminates, its resources are automatically released back to  the
       system:  it  is not possible to join with the thread in order to obtain its exit status.  Making a thread detached is useful for some types of daemon threads whose exit status the application
       does not need to care about.  By default, a new thread is created in a joinable state, unless attr was set to create the thread in a detached state (using pthread_attr_setdetachstate(3)).

       On Linux/x86-32, the default stack size for a new thread is 2 megabytes.  Under the NPTL threading implementation, if the RLIMIT_STACK soft resource limit at the time the program started  has
       any  value  other  than  "unlimited", then it determines the default stack size of new threads.  Using pthread_attr_setstacksize(3), the stack size attribute can be explicitly set in the attr
       argument used to create a thread, in order to obtain a stack size other than the default.

BUGS
       In the obsolete LinuxThreads implementation, each of the threads in a process has a different process ID.  This is in violation of the POSIX threads specification, and is the source  of  many
       other nonconformances to the standard; see pthreads(7).

EXAMPLE
       The program below demonstrates the use of pthread_create(), as well as a number of other functions in the pthreads API.

       In the following run, on a system providing the NPTL threading implementation, the stack size defaults to the value given by the "stack size" resource limit:

           $ ulimit -s
           8192            # The stack size limit is 8 MB (0x800000 bytes)
           $ ./a.out hola salut servus
           Thread 1: top of stack near 0xb7dd03b8; argv_string=hola
           Thread 2: top of stack near 0xb75cf3b8; argv_string=salut
           Thread 3: top of stack near 0xb6dce3b8; argv_string=servus
           Joined with thread 1; returned value was HOLA
           Joined with thread 2; returned value was SALUT
           Joined with thread 3; returned value was SERVUS

       In the next run, the program explicitly sets a stack size of 1MB (using pthread_attr_setstacksize(3)) for the created threads:

           $ ./a.out -s 0x100000 hola salut servus
           Thread 1: top of stack near 0xb7d723b8; argv_string=hola
           Thread 2: top of stack near 0xb7c713b8; argv_string=salut
           Thread 3: top of stack near 0xb7b703b8; argv_string=servus
           Joined with thread 1; returned value was HOLA
           Joined with thread 2; returned value was SALUT
           Joined with thread 3; returned value was SERVUS

   Program source

       #include <pthread.h>
       #include <string.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <unistd.h>
       #include <errno.h>
       #include <ctype.h>

       #define handle_error_en(en, msg) \
               do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

       #define handle_error(msg) \
               do { perror(msg); exit(EXIT_FAILURE); } while (0)

       struct thread_info {    /* Used as argument to thread_start() */
           pthread_t thread_id;        /* ID returned by pthread_create() */
           int       thread_num;       /* Application-defined thread # */
           char     *argv_string;      /* From command-line argument */
       };

       /* Thread start function: display address near top of our stack,
          and return upper-cased copy of argv_string */

       static void *
       thread_start(void *arg)
       {
           struct thread_info *tinfo = arg;
           char *uargv, *p;

           printf("Thread %d: top of stack near %p; argv_string=%s\n",
                   tinfo->thread_num, &p, tinfo->argv_string);

           uargv = strdup(tinfo->argv_string);
           if (uargv == NULL)
               handle_error("strdup");

           for (p = uargv; *p != '\0'; p++)
               *p = toupper(*p);

           return uargv;
       }

       int
       main(int argc, char *argv[])
       {
           int s, tnum, opt, num_threads;
           struct thread_info *tinfo;
           pthread_attr_t attr;
           int stack_size;
           void *res;

           /* The "-s" option specifies a stack size for our threads */

           stack_size = -1;
           while ((opt = getopt(argc, argv, "s:")) != -1) {
               switch (opt) {
               case 's':
                   stack_size = strtoul(optarg, NULL, 0);
                   break;

               default:
                   fprintf(stderr, "Usage: %s [-s stack-size] arg...\n",
                           argv[0]);
                   exit(EXIT_FAILURE);
               }
           }

           num_threads = argc - optind;

           /* Initialize thread creation attributes */

           s = pthread_attr_init(&attr);
           if (s != 0)
               handle_error_en(s, "pthread_attr_init");

           if (stack_size > 0) {
               s = pthread_attr_setstacksize(&attr, stack_size);
               if (s != 0)
                   handle_error_en(s, "pthread_attr_setstacksize");
           }

           /* Allocate memory for pthread_create() arguments */

           tinfo = calloc(num_threads, sizeof(struct thread_info));
           if (tinfo == NULL)
               handle_error("calloc");

           /* Create one thread for each command-line argument */

           for (tnum = 0; tnum < num_threads; tnum++) {
               tinfo[tnum].thread_num = tnum + 1;
               tinfo[tnum].argv_string = argv[optind + tnum];

               /* The pthread_create() call stores the thread ID into
                  corresponding element of tinfo[] */

               s = pthread_create(&tinfo[tnum].thread_id, &attr,
                                  &thread_start, &tinfo[tnum]);
               if (s != 0)
                   handle_error_en(s, "pthread_create");
           }

           /* Destroy the thread attributes object, since it is no
              longer needed */

           s = pthread_attr_destroy(&attr);
           if (s != 0)
               handle_error_en(s, "pthread_attr_destroy");

           /* Now join with each thread, and display its returned value */

           for (tnum = 0; tnum < num_threads; tnum++) {
               s = pthread_join(tinfo[tnum].thread_id, &res);
               if (s != 0)
                   handle_error_en(s, "pthread_join");

               printf("Joined with thread %d; returned value was %s\n",
                       tinfo[tnum].thread_num, (char *) res);
               free(res);      /* Free memory allocated by thread */
           }


           free(tinfo);
           exit(EXIT_SUCCESS);
       }

SEE ALSO
       getrlimit(2), pthread_attr_init(3), pthread_cancel(3), pthread_detach(3), pthread_equal(3), pthread_exit(3), pthread_getattr_np(3), pthread_join(3), pthread_self(3), pthreads(7)

COLOPHON
       This page is part of release 4.04 of the Linux man-pages project.  A description of the project, information about reporting bugs, and the latest version of this page, can be found at
       http://www.kernel.org/doc/man-pages/.

Linux                                                                                         2015-07-23                                                                             PTHREAD_CREATE(3)

· Demo1 单线程(创建线程pthread_t 、创建线程run方法pthread_create)

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void* myfunc(void* args){
	printf("Hello World\n");
	return NULL;
}

int main(){
	pthread_t th;
	pthread_create(&th, NULL, myfunc, NULL);	//第一个参数是线程th的地址,第三个参数是指针函数的名字(是不是函数的指针不知道)
	pthread_join(th, NULL);	//等待线程th结束
	return 0;
}

编译运行:

[yg@ubuntu ~/arnold_test/20211013_pthread_test]5$ gcc pthread_test1.c -lpthread
[yg@ubuntu ~/arnold_test/20211013_pthread_test]6$ 
[yg@ubuntu ~/arnold_test/20211013_pthread_test]6$ 
[yg@ubuntu ~/arnold_test/20211013_pthread_test]6$ ./a.out 
Hello World

· Demo2 双线程(一个打印1,一个打印2)

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void* myfunc1(void* args){
	for(int i = 1; i<1000000; i++){
			printf("%d", 1);
	}
	return NULL;
}

void* myfunc2(void* args){
	for(int i = 1; i<1000000; i++){
			printf("%d", 2);
	}
	return NULL;
}

int main(){
	pthread_t th1;
	pthread_t th2;
	
	pthread_create(&th1, NULL, myfunc1, NULL);	//第一个参数是线程th的地址,第三个参数是指针函数的名字(是不是函数的指针不知道)
	pthread_create(&th2, NULL, myfunc2, NULL);
	
	pthread_join(th1, NULL);	//等待线程th结束,注意这里第一个参数不用地址
	pthread_join(th2, NULL);
	return 0;
}

编译运行:

[yg@ubuntu ~/arnold_test/20211013_pthread_test]5$ gcc pthread_test1.c -lpthread
[yg@ubuntu ~/arnold_test/20211013_pthread_test]6$ 
[yg@ubuntu ~/arnold_test/20211013_pthread_test]6$ 
[yg@ubuntu ~/arnold_test/20211013_pthread_test]6$ ./a.out 

运行结果:可以看到,是交替运行的
在这里插入图片描述

pthread_create()函数第四个参数,用于传递第三个参数中函数的参数使用(参数你可以传递任何类型,到时转换成相应类型的指针即可)

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void* myfunc(void* args){
	char* name = (char*)args;
	for(int i = 1; i<10000; i++){
			printf("%s:%d\t", name, i);
	}
	return NULL;
}

int main(){
	pthread_t th1;
	pthread_t th2;
	
	pthread_create(&th1, NULL, myfunc, "th1");	//第一个参数是线程th的地址,第三个参数是指针函数的名字(是不是函数的指针不知道)
	pthread_create(&th2, NULL, myfunc, "th2");
	
	pthread_join(th1, NULL);	//等待线程th结束,注意这里第一个参数不用地址
	pthread_join(th2, NULL);
	return 0;
}

编译运行:

[yg@ubuntu ~/arnold_test/20211013_pthread_test]5$ gcc pthread_test1.c -lpthread
[yg@ubuntu ~/arnold_test/20211013_pthread_test]6$ 
[yg@ubuntu ~/arnold_test/20211013_pthread_test]6$ 
[yg@ubuntu ~/arnold_test/20211013_pthread_test]6$ ./a.out 

运行结果:也可以看到有交替的
在这里插入图片描述

· Demo3 随机5000个数字,线程一加前2500个,线程2加后2500个,然后两个结果求和

我的垃圾实现- -

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int arr[5000];	//创建一个包含大小为5000的整型数组
int s1;	//前2500个数字和,分配给线程1去加
int s2;	//后2500个数字和,分配给线程2去加

void* myfunc(void* args){
	int index = *(int*)args;
	//printf("%d\n", index);
	int count = 0;
	int sum = 0;
	while(count<2500){
		sum+=arr[index];
		index++;
		count++;
	}
	if(index-2500==0){
		s1+=sum;
	}else{
		s2+=sum;
	}
	return NULL;
}

int main(){
	//设置随机数种子(否则每次都一样结果)
	srand(time(0));
	
	int i;
	for(i=0;i<5000;i++){
		
		//给数组赋值
		arr[i]=rand()%50;	//rand()特别大,所以要取余
		//printf("%d\n", arr[i]);
		//arr[i]=i+1;	//测试1到5000和是12502500,没问题
		//printf("%d\n",arr[i]);
	}
	
	pthread_t th1;
	pthread_t th2;
	
	int a = 0;
	int b = 2500;
	
	pthread_create(&th1, NULL, myfunc, &a);	
	pthread_create(&th2, NULL, myfunc, &b);
	
	pthread_join(th1, NULL);	
	pthread_join(th2, NULL);
	
	printf("s1 = %d, s2 = %d\n", s1, s2);
	return 0;
}

编译运行结果:因为是对50取余,所以每个结果接近(0~49)* 2500 = 24.5 * 2500 = 61250

[yg@ubuntu ~/arnold_test/20211013_pthread_test]127$ gcc pthread_test1.c -lpthread
[yg@ubuntu ~/arnold_test/20211013_pthread_test]128$ ./a.out 
s1 = 60163, s2 = 61379
[yg@ubuntu ~/arnold_test/20211013_pthread_test]129$ ./a.out 
s1 = 62296, s2 = 60521
[yg@ubuntu ~/arnold_test/20211013_pthread_test]130$ ./a.out 
s1 = 61066, s2 = 61084
[yg@ubuntu ~/arnold_test/20211013_pthread_test]131$ ./a.out 
s1 = 61051, s2 = 61582
[yg@ubuntu ~/arnold_test/20211013_pthread_test]132$ 

老师的实现(通过传入结构体指针,获取返回值结果)

1、可以为每个线程单独写一个函数,这样虽然简答,但代码重复多

2、只写一个函数,在外部定义包含需要相加的数字下标起止点的结构体,同时在结构体中定义接收计算结果的变量,将结构体作为线程函数的第四个参数传入

代码实现:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int arr[5000];	//创建一个包含大小为5000的整型数组
int s1;	//前2500个数字和,分配给线程1去加
int s2;	//后2500个数字和,分配给线程2去加

//typedef struct _MY_ARGS{
typedef struct{
	int start;
	int end;
	int result;
}MY_ARGS;

void* myfunc(void* args){
	MY_ARGS* p = (MY_ARGS*)args;
	int sum = 0;	//不要忘记赋初始值(!)
	int i;
	for(i= p->start; i < p->end; i++){
		sum+=arr[i];
		//printf("%d\n", arr[i]);
	}
	p->result = sum;
	return NULL;
}

int main(){
	//设置随机数种子(否则每次都一样结果)
	srand(time(0));
	
	int i;
	for(i=0;i<5000;i++){
		
		//给数组赋值
		arr[i]=rand()%50;	//rand()特别大,所以要取余
		//printf("%d\n", arr[i]);
		//arr[i]=i+1;	//测试1到5000和是12502500,没问题
		//printf("%d\n",arr[i]);
	}
	
	pthread_t th1;
	pthread_t th2;
	
	MY_ARGS args1 = {0, 2500, 0};
	MY_ARGS args2 = {2500, 5000, 0};
	
	pthread_create(&th1, NULL, myfunc, &args1);	
	pthread_create(&th2, NULL, myfunc, &args2);
	
	pthread_join(th1, NULL);	
	pthread_join(th2, NULL);
	
	printf("s1 = %d, s2 = %d\n", args1.result, args2.result);
	return 0;
}

编译运行结果:

[yg@ubuntu ~/arnold_test/20211013_pthread_test]182$ gcc pthread_test1.c -lpthread
[yg@ubuntu ~/arnold_test/20211013_pthread_test]183$ ./a.out 
s1 = 63337, s2 = 59578
[yg@ubuntu ~/arnold_test/20211013_pthread_test]184$ ./a.out 
s1 = 60652, s2 = 60818
[yg@ubuntu ~/arnold_test/20211013_pthread_test]185$ ./a.out 
s1 = 61265, s2 = 62009
[yg@ubuntu ~/arnold_test/20211013_pthread_test]186$ ./a.out 
s1 = 61265, s2 = 62009
[yg@ubuntu ~/arnold_test/20211013_pthread_test]187$ ./a.out 
s1 = 61912, s2 = 62479
[yg@ubuntu ~/arnold_test/20211013_pthread_test]188$ 

· Demo4 两个线程同时提取数组元素相加(数组元素为1~5000)

不加锁试试

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int arr[5000];	//创建一个包含大小为5000的整型数组
int sum = 0;	//两个线程同时对sum进行操作

//typedef struct _MY_ARGS{
typedef struct{
	int start;
	int end;
}MY_ARGS;

void* myfunc(void* args){
	MY_ARGS* p = (MY_ARGS*)args;
	int i;
	for(i= p->start; i < p->end; i++){
		sum+=arr[i];
		//printf("%d\n", arr[i]);
	}
	return NULL;
}

int main(){
	//设置随机数种子(否则每次都一样结果)
	srand(time(0));
	
	int i;
	for(i=0;i<5000;i++){
		
		//给数组赋值
		//arr[i]=rand()%50;	//rand()特别大,所以要取余
		//printf("%d\n", arr[i]);
		arr[i]=i+1;	//测试1到5000和是12502500,没问题
		//printf("%d\n",arr[i]);
	}
	
	pthread_t th1;
	pthread_t th2;
	
	MY_ARGS args1 = {0, 2500};
	MY_ARGS args2 = {2500, 5000};
	
	pthread_create(&th1, NULL, myfunc, &args1);	
	pthread_create(&th2, NULL, myfunc, &args2);
	
	pthread_join(th1, NULL);	
	pthread_join(th2, NULL);
	
	printf("sum = %d", sum);
	return 0;
}

运行编译结果:

[yg@ubuntu ~/arnold_test/20211013_pthread_test]207$ gcc pthread_test1.c -lpthread
[yg@ubuntu ~/arnold_test/20211013_pthread_test]208$ ./a.out 
sum = 12502500[yg@ubuntu ~/arnold_test/20211013_pthread_test]209$ ./a.out 
sum = 12502500[yg@ubuntu ~/arnold_test/20211013_pthread_test]210$ ./a.out 
sum = 12502500[yg@ubuntu ~/arnold_test/20211013_pthread_test]211$ ./a.out 
sum = 12502500[yg@ubuntu ~/arnold_test/20211013_pthread_test]212$ ./a.out 
sum = 12502500[yg@ubuntu ~/arnold_test/20211013_pthread_test]213$ ./a.out 

可以看到,结果不全尽然是12502500,说明两个线程其中一个在把元素加到sum变量的同时,另一个线程也在把另一个元素往sum里面加,没排队按顺序加,导致结果不对

在这里插入图片描述

加mutex锁🔒(pthread_mutex_t lock;)

pthread_mutex_init() 锁初始化函数

在这里插入图片描述

代码示例(加 / 解线程锁:pthread_mutex_lock(&lock); pthread_mutex_unlock(&lock);)

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int arr[5000];	//创建一个包含大小为5000的整型数组
int sum = 0;	//两个线程同时对sum进行操作

pthread_mutex_t lock;	//创建mutex锁🔒

//typedef struct _MY_ARGS{
typedef struct{
	int start;
	int end;
}MY_ARGS;

void* myfunc(void* args){
	MY_ARGS* p = (MY_ARGS*)args;
	int i;
	//int a;
	for(i= p->start; i < p->end; i++){
		pthread_mutex_lock(&lock);	//锁住代码
		
		//a=sum;
		sum+=arr[i];
		//printf("%d", sum-a-arr[i]);	//验证不加锁时会不按顺序乱加sum(如果出现不为0的数表示线程乱窜了)
		
		pthread_mutex_unlock(&lock);	//解锁代码
		//printf("%d\n", arr[i]);
	}
	return NULL;
}

int main(){
	//设置随机数种子(否则每次都一样结果)
	srand(time(0));
	
	int i;
	for(i=0;i<5000;i++){
		
		//给数组赋值
		//arr[i]=rand()%50;	//rand()特别大,所以要取余
		//printf("%d\n", arr[i]);
		arr[i]=i+1;	//测试1到5000和是12502500,没问题
		//printf("%d\n",arr[i]);
	}
	
	pthread_t th1;
	pthread_t th2;
	
	pthread_mutex_init(&lock, NULL);	//初始化mutex锁🔒
	
	MY_ARGS args1 = {0, 2500};
	MY_ARGS args2 = {2500, 5000};
	
	pthread_create(&th1, NULL, myfunc, &args1);	
	pthread_create(&th2, NULL, myfunc, &args2);
	
	pthread_join(th1, NULL);	
	pthread_join(th2, NULL);
	
	printf("sum = %d", sum);
	return 0;
}

运行编译结果:

[yg@ubuntu ~/arnold_test/20211013_pthread_test]346$ gcc pthread_tedt1.c -lpthread
[yg@ubuntu ~/arnold_test/20211013_pthread_test]347$ ./a.out 
sum = 12502500[yg@ubuntu ~/arnold_test/20211013_pthread_test]348$ ./a.out 
sum = 12502500[yg@ubuntu ~/arnold_test/20211013_pthread_test]349$ ./a.out 
sum = 12502500[yg@ubuntu ~/arnold_test/20211013_pthread_test]350$ ./a.out 
sum = 12502500[yg@ubuntu ~/arnold_test/20211013_pthread_test]351$ ./a.out 
sum = 12502500[yg@ubuntu ~/arnold_test/20211013_pthread_test]352$ 

查看运行时间:看不出来,数字太小了(反正作者的意思就是,加锁解锁也需要消费时间!

[yg@ubuntu ~/arnold_test/20211013_pthread_test]352$ time ./a.out 
sum = 12502500
real	0m0.001s
user	0m0.001s
sys	0m0.000s

假共享(伪共享)(False Sharing):在多核cpu中,因为多线程不同核缓存的不一致,需要同步导致的时间延误?

https://www.bilibili.com/video/BV1kt411z7ND?p=4
在这里插入图片描述
这里面作者把两个线程计算结果分别存到同一个整型数组的连续两个位置,长度较短,于是RAM复制到Cache缓存的时候就会整体复制过去,,同步时就会产生较大的时间延误

怎么让它不整体复制呢,方法就是增加字符数组长度(增大到它不想整体复制为止),比如将第一个结果存到第一个int下,将第二个结果存到第101个int下,

  C++知识库 最新文章
【C++】友元、嵌套类、异常、RTTI、类型转换
通讯录的思路与实现(C语言)
C++PrimerPlus 第七章 函数-C++的编程模块(
Problem C: 算法9-9~9-12:平衡二叉树的基本
MSVC C++ UTF-8编程
C++进阶 多态原理
简单string类c++实现
我的年度总结
【C语言】以深厚地基筑伟岸高楼-基础篇(六
c语言常见错误合集
上一篇文章      下一篇文章      查看所有文章
加:2021-10-15 11:36:23  更:2021-10-15 11:37:57 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/12 15:59:00-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码