IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> C++知识库 -> PCL系列笔记——KDtree -> 正文阅读

[C++知识库]PCL系列笔记——KDtree

作用

对点云数据进行组织,建立树形数据结构,用于对点云进行高效的近邻搜索等(如进行K最近邻搜索、半径内邻域搜索)

概念

K维树,是在计算机科学领域用于组织在K维空间中数据点(一个点由K个变量表示)的数据结构(点云中的K维树其实就是3维树,其数据就三个维度,也就是传感器坐标系下的XYZ位置),它是一种带有额外限制的二叉搜索树。K维树在范围搜索以及近邻搜索中很有用。K维树的每一层,将会沿着某一特定维度的超平面切分所有子节点,每个父节点下的所有子节点将会被分成两部分(所以说K维树其实就是二叉搜索树)。下面将详细阐述一下K维树的切分过程,为了形象,我们点云中的3维树为例:在点云中,每个数据点有3各维度数据,故而为了对点云数据进行有效组织,我们应该建立三维树。在根节点处,我们首先可以在X维度依据一定的规则对所有子节点进行划分,然后在下一层,可以在Y维度对数据进行划分(当然也可以是在Z维度),最后在剩下的一个维度进行划分即可,在KD树的划分规则中,最有效的划分方式就是依据中值进行划分
下图展示了一个二维KD树的例子:
二维KD树

代码

#include <pcl/point_cloud.h>
#include <pcl/kdtree/kdtree_flann.h>

#include <iostream>
#include <vector>
#include <ctime>


int main(int argc, char** argv)
{
	srand(time(NULL));    //防止每次出现的随机数都是一样的
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);    //创建一个指向点云的指针
     /**************************生成点云方法1**************************/
	//初始化点云相关变量
	cloud->width = 1000;    
	cloud->height = 1;  //说明是无序点云
	cloud->points.resize(cloud->width* cloud->height);  //点云的点数

	//生成点云
	for (std::size_t t = 0; t < cloud->size(); t++)
	{
		cloud->points[t].x = 1024.0f * rand() / (RAND_MAX + 1.0f);
		cloud->points[t].y = 1024.0f * rand() / (RAND_MAX + 1.0f);
		cloud->points[t].z = 1024.0f * rand() / (RAND_MAX + 1.0f);
	}
	/****************************生成点云方法2*************************/
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_1(new pcl::PointCloud<pcl::PointXYZ>);
	pcl::PointXYZ point;
	for (std::size_t t = 0; t < 1000; t++)
	{
		point.x = 1024.0f * rand() / (RAND_MAX + 1.0f);
		point.y = 1024.0f * rand() / (RAND_MAX + 1.0f);
		point.z = 1024.0f * rand() / (RAND_MAX + 1.0f);
		cloud_1->push_back(point);       //采用push_back添加点进而生成点云
	}
	//创建KD-Tree实例
	pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
	kdtree.setInputCloud(cloud);
	//随机初始化一个查找点
	pcl::PointXYZ searchPoint; 

	searchPoint.x = 1024.0f * rand() / (RAND_MAX + 1.0f);
	searchPoint.y = 1024.0f * rand() / (RAND_MAX + 1.0f);
	searchPoint.z = 1024.0f * rand() / (RAND_MAX + 1.0f);
	int K = 10;
	std::vector<int> pointIdxNKNSearch(K);    //创建一个含有K个元素的Vector变量,用于存储点的索引
	std::vector<float> pointNKNSquaredDistance(K); //创建一个含有K个元素的Vector变量,用于存储到目标点的距离
	std::cout << "K nearest neighbor search at (" << searchPoint.x
		<< " " << searchPoint.y
		<< " " << searchPoint.z
		<< ") with K=" << K << std::endl;
	if (kdtree.nearestKSearch(searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0) //这个函数会把索引存在pointIdxNKNSearch中
	{
		for (std::size_t i = 0; i < pointIdxNKNSearch.size(); ++i)
			std::cout << "    " << (*cloud)[pointIdxNKNSearch[i]].x
			<< " " << (*cloud)[pointIdxNKNSearch[i]].y
			<< " " << (*cloud)[pointIdxNKNSearch[i]].z
			<< " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
	}
	// Neighbors within radius search

	std::vector<int> pointIdxRadiusSearch;
	std::vector<float> pointRadiusSquaredDistance;

	float radius = 256.0f * rand() / (RAND_MAX + 1.0f);

	std::cout << "Neighbors within radius search at (" << searchPoint.x
		<< " " << searchPoint.y
		<< " " << searchPoint.z
		<< ") with radius=" << radius << std::endl;


	if (kdtree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0)
	{
		for (std::size_t i = 0; i < pointIdxRadiusSearch.size(); ++i)
			std::cout << "    " << (*cloud)[pointIdxRadiusSearch[i]].x
			<< " " << (*cloud)[pointIdxRadiusSearch[i]].y
			<< " " << (*cloud)[pointIdxRadiusSearch[i]].z
			<< " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
	}
	return 0;

}

程序运行结果如下图(运行环境为visual studio2019)
K近邻搜索结果与半径邻域搜索结果

参考链接

1、PCL官方教程:https://pcl.readthedocs.io/projects/tutorials/en/latest/index.html?highlight=KDtree
建议无论如何看看原滋原味的官方文档,可以先看看别人的Blog,但是最后一定看看官方文档

  C++知识库 最新文章
【C++】友元、嵌套类、异常、RTTI、类型转换
通讯录的思路与实现(C语言)
C++PrimerPlus 第七章 函数-C++的编程模块(
Problem C: 算法9-9~9-12:平衡二叉树的基本
MSVC C++ UTF-8编程
C++进阶 多态原理
简单string类c++实现
我的年度总结
【C语言】以深厚地基筑伟岸高楼-基础篇(六
c语言常见错误合集
上一篇文章      下一篇文章      查看所有文章
加:2021-11-15 15:39:53  更:2021-11-15 15:41:58 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/4 10:48:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码