本文基于红黑树模拟实现map和set,首先对之前模拟实现的红黑树做了一些改造,之后对map和set做了模拟实现。前文:[C/C++]详解STL容器7--红黑树的介绍及部分模拟实现_RMA515T的博客-CSDN博客
目录
一、红黑树的改造
节点类型
迭代器
反向迭代器
改造后的红黑树
二、map模拟实现
三、set模拟实现
总结
一、红黑树的改造
因为关联式容器中存储的是<key, value>的键值对,因此k为key的类型,V如果是map,则为pair<K, V>; 如果是set,则为k;KeyOfV: 通过V来获取key的一个仿函数类。
节点类型
template<class T> //pair类型的T
struct RBTreeNode //节点结构体
{
RBTreeNode<T>* _left; //左子树
RBTreeNode<T>* _right; //右子树
RBTreeNode<T>* _parent; //父节点
T _data;
Colour _col;
RBTreeNode(const T& x) //构造函数
: _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _data(x)
, _col(RED)
{}
};
迭代器
template<class T, class Ref, class Ptr>
struct __TreeIterator
{
typedef Ref reference;
typedef Ptr pointer;
typedef RBTreeNode<T> Node;
typedef __TreeIterator<T, Ref, Ptr> Self;
Node* _node;
__TreeIterator(Node* node)
:_node(node)
{}
Ref operator*() //*返回引用
{
return _node->_data;
}
Ptr operator->() //->返回指针 可以直接用
{
return &_node->_data;
}
bool operator != (const Self& s) const
{
return _node != s._node;
}
bool operator == (const Self& s) const
{
return _node == s._node;
}
Self operator++()
{
if (_node->_right)
{
Node* left = _node->_right;
while (left->_left)
{
left = left->_left;
}
_node = left;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent&& cur == parent->_right)
{
cur = cur->_parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
Self operator--()
{
if (_node->_left)
{
Node* right = _node->_left;
while (right->_left)
{
right = right->_left;
}
_node = right;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent && cur == parent->_left)
{
cur = cur->_parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
};
反向迭代器
(这里写了一个反向迭代器适配器)
template<class Iterator>
struct ReverseIterator
{
typedef typename Iterator::reference Ref;
typedef typename Iterator::pointer Ptr;
typedef ReverseIterator<Iterator> Self;
Iterator _it;
ReverseIterator(Iterator it)
:_it(it)
{}
Ref operator*() //*返回引用
{
return *_it;
}
Ptr operator->() //->返回指针 可以直接用
{
return _it.operator->();
}
bool operator != (const Self& s) const
{
return _it != s._it;
}
bool operator == (const Self& s) const
{
return _it == s._it;
}
Self operator++()
{
--_it;
return *this;
}
Self operator--()
{
++_it;
return *this;
}
};
改造后的红黑树
#pragma once
#include<iostream>
#include"RIterator.h"
using namespace std;
enum Colour //红黑树颜色枚举
{
RED,
BLACK,
};
template<class T> //pair类型的T
struct RBTreeNode //节点结构体
{
RBTreeNode<T>* _left; //左子树
RBTreeNode<T>* _right; //右子树
RBTreeNode<T>* _parent; //父节点
T _data;
Colour _col;
RBTreeNode(const T& x) //构造函数
: _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _data(x)
, _col(RED)
{}
};
template<class T, class Ref, class Ptr>
struct __TreeIterator
{
typedef Ref reference;
typedef Ptr pointer;
typedef RBTreeNode<T> Node;
typedef __TreeIterator<T, Ref, Ptr> Self;
Node* _node;
__TreeIterator(Node* node)
:_node(node)
{}
Ref operator*() //*返回引用
{
return _node->_data;
}
Ptr operator->() //->返回指针 可以直接用
{
return &_node->_data;
}
bool operator != (const Self& s) const
{
return _node != s._node;
}
bool operator == (const Self& s) const
{
return _node == s._node;
}
Self operator++()
{
if (_node->_right)
{
Node* left = _node->_right;
while (left->_left)
{
left = left->_left;
}
_node = left;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent&& cur == parent->_right)
{
cur = cur->_parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
Self operator--()
{
if (_node->_left)
{
Node* right = _node->_left;
while (right->_left)
{
right = right->_left;
}
_node = right;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent && cur == parent->_left)
{
cur = cur->_parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
};
template<class K, class T, class KeyOfT> //通过仿函数来取key的值进行比较
class RBTree
{
typedef RBTreeNode<T> Node;
private:
Node* _root;
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
Node* parentP = parent->_parent;
if (subLR) //左子树的右子树连接到父的右
subLR->_parent = parent;
parent->_left = subLR;
subL->_right = parent;
parent->_parent = subL;
// 如果parent是根节点,根新指向根节点的指针
if (parent == _root)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
// 如果parent是子树,可能是其双亲的左子树,也可能是右子树
if (parentP->_left == parent)
parentP->_left = subL;
else
parentP->_right = subL;
subL->_parent = parentP;
}
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
Node* parentP = parent->_parent;
if (subRL)
subRL->_parent = parent;
parent->_right = subRL;
subR->_left = parent;
parent->_parent = subR;
// 如果parent是根节点,根新指向根节点的指针
if (parent == _root)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
// 如果parent是子树,可能是其双亲的左子树,也可能是右子树
if (parentP->_left == parent)
parentP->_left = subR;
else
parentP->_right = subR;
subR->_parent = parentP;
}
}
void _InOrder(Node* root)
{
if (root == nullptr)
{
return;
}
_InOrder(root->_left);
cout << root->_kv.first << ':' << root->_kv.second << endl;
_InOrder(root->_right);
}
bool _CheckBlance(Node* root, int BlackNum, int count)
{
if (root == nullptr)
{
if (count == BlackNum)
return true;
cout << "黑色节点的数量不相等" << endl;
return false;
}
if (root->_col == RED && root->_parent->_col == RED)
{
cout << "存在连续的红色节点" << endl;
return false;
}
if (root->_col == BLACK)
count++;
return _CheckBlance(root->_left, BlackNum, count) //递归处理每个边
&& _CheckBlance(root->_right, BlackNum, count);
}
void _Destory(Node* root)
{
if (root == nullptr)
{
return;
}
_Destory(root->_left);
_Destory(root->_right);
delete root;
}
public:
typedef __TreeIterator < T, T&, T* > iterator;
typedef __TreeIterator < T, const T&, const T* > const_iterator;
typedef ReverseIterator<iterator> reverse_iterator;
RBTree()
:_root(nullptr)
{}
~RBTree()
{
_Destory(_root);
_root = nullptr;
}
reverse_iterator rbegin()
{
Node* right= _root;
while (right && right->_right) //最左
{
right = right->_right;
}
return reverse_iterator(right);
}
reverse_iterator rend()
{
return reverse_iterator(nullptr);
}
iterator begin()
{
Node* left = _root;
while (left && left->_left) //最左
{
left = left->_left;
}
return iterator(left);
}
iterator end()
{
return iterator(nullptr);
}
Node* Find(const K& key)
{
KeyOfT kot; //
Node* cur = _root;
while (cur)
{
if (kot(cur->_data) > key)
{
cur = cur->_left;
}
else if (kot(cur->_data) < key)
{
cur = cur->_right;
}
else
{
return cur;
}
}
return nullptr;
}
pair<iterator, bool> Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return make_pair(iterator(_root), true);
}
KeyOfT kot;
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (kot(cur->_data) > kot(data))
{
parent = cur;
cur = cur->_left;
}
else if (kot(cur->_data) < kot(data))
{
parent = cur;
cur = cur->_right;
}
else
{
return make_pair(iterator(cur), false);
}
}
Node* newNode = new Node(data);
newNode->_col = RED;
if (kot(parent->_data) > kot(data))
{
parent->_left = newNode;
newNode->_parent = parent;
}
else
{
parent->_right = newNode;
newNode->_parent = parent;
}
cur = newNode;
while (parent && parent->_col == RED) //违反规则三
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left) //左半边
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED) //情况一
{
uncle->_col = BLACK;
grandfather->_col = RED;
parent->_col = BLACK;
cur = grandfather; //迭代
parent = cur->_parent;
}
else //情况2.3
{
if (cur == parent->_left) //单侧
{
RotateR(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else //折
{
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break; //黑色数量无变化,不需要向上
}
}
else // parent == grandfather->_right
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED) //情况一
{
uncle->_col = BLACK;
grandfather->_col = RED;
parent->_col = BLACK;
cur = grandfather; //迭代
parent = cur->_parent;
}
else //情况2.3
{
if (cur == parent->_right) //单侧
{
RotateL(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else //折
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK; //插入结束再次将根变为黑
return make_pair(iterator(newNode), true);
}
bool CheckBlance() //检查是否为红黑树,每个路径的黑色节点数相等,
{
if (_root == nullptr)
{
return true;
}
if (_root->_col == RED)
{
return false;
}
int BlackNum = 0;
Node* left = _root; //找最左路径的黑节点个数,确定基准
while (left)
{
if (left->_col == BLACK)
BlackNum++;
left = left->_left;
}
int count = 0;
return _CheckBlance(_root, BlackNum, count);
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
};
二、map模拟实现
#pragma once
#include"RBTree.h"
namespace zht
{
template<class K, class V>
class map
{
struct MapKeyOfT //包装仿函数,重载()
{
const K& operator()(const pair<const K, V>& kv)
{
return kv.first;
}
};
public:
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::reverse_iterator reverse_iterator;
reverse_iterator rbegin()
{
return _t.rbegin();
}
reverse_iterator rend()
{
return _t.rend();
}
iterator begin()
{
return _t.begin();
}
iterator end()
{
return _t.end();
}
pair<iterator, bool> insert(const pair<const K, V>& kv)
{
return _t.Insert(kv);
}
V& operator[](const K& key) //直接插入
{
pair<iterator, bool> ret = insert(make_pair(key, V()));
return ret.first->second;
}
private:
RBTree<K, pair<const K, V>, MapKeyOfT> _t;
};
}
三、set模拟实现
#pragma once
#pragma once
#include"RBTree.h"
namespace zht
{
template<class K, class V>
class set
{
struct SetKeyOfT //包装仿函数,重载()
{
const K& operator()(const K& key)
{
return key;
}
};
public:
typedef typename RBTree<K, K, SetKeyOfT>::iterator iterator;
typedef typename RBTree<K, K, SetKeyOfT>::reverse_iterator reverse_iterator;
reverse_iterator rbegin()
{
return _t.rbegin();
}
reverse_iterator rend()
{
return _t.rend();
}
iterator begin()
{
return _t.begin();
}
iterator end()
{
return _t.end();
}
pair<iterator, bool> insert(const K& key)
{
return _t.Insert(key);
}
private:
RBTree<K, K, SetKeyOfT> _t;
};
}
总结
map和set的底层为红黑树,因此只需在内部封装一棵红黑树,即可将该容器实现出来。
|