原题:
Max Sum
?1000ms??32768K
描述:
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
输入:
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
输出:
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
样例输入:
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
样例输出:
Case 1:
14 1 4
Case 2:
7 1 6
(链接:Max Sum | JXNUOJ)
翻译:
最大和
已知数组a[1],a[2],···,a[n],你的工作是计算其子列最大和。例如,(6,-1,5,4,-7),其序列最大和是6+(-1)+5+4=14。
输入:
第一行输入包括一个整数T(1<=N<=20)代表测试数据组数。接下来T行,每行开头是一个数字N(1<=N<=100000),后面是N个整数(所有整数介于-1000和1000)。
输出:
对于每个测试数组,你应该输出两行。第一行是“Case #:”,#代表测试数组数。第二行包含3个整数,分别为:序列最大和,子序列开始的位置,子序列结束的位置。如果你有多余一个的结果,输出第一个数。在两个测试数组之间输出一个空格行。
|