IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> C++知识库 -> 第8讲 视觉里程计2 -> 正文阅读

[C++知识库]第8讲 视觉里程计2

8.3 实践:LK光流

(1)环境

opencv2

(2)代码详解

CMakeLists.txt

cmake_minimum_required( VERSION 2.8 )
project( useLK )

set( CMAKE_BUILD_TYPE Release )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )

find_package( OpenCV )
include_directories( ${OpenCV_INCLUDE_DIRS} )

add_executable( useLK useLK.cpp )
target_link_libraries( useLK ${OpenCV_LIBS} )

useLK.cpp

#include <iostream>
#include <fstream>
#include <list>
#include <vector>
#include <chrono>
using namespace std; 

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/video/tracking.hpp>

int main( int argc, char** argv )
{
    if (argc != 2){    //如果参数数量不对
        cout << "usage: useLK path_to_dataset" << endl;
        return 1;
    }
    string path_to_dataset = argv[1];   //第一个参数
    string associate_file = path_to_dataset + "/associate.txt";
    
    ifstream fin(associate_file);
    if (!fin) {   //如果不存在这个路径
        cerr << "I cann't find associate.txt!" << endl;
        return 1;
    }
    
    string rgb_file, depth_file, time_rgb, time_depth;
    list<cv::Point2f> keypoints;      // 因为要删除跟踪失败的点,使用list
    cv::Mat colorImage, depthImage, last_colorImage;
    
    for (int index = 0; index < 100; index++){
        fin >> time_rgb >> rgb_file >> time_depth >> depth_file;
        colorImage = cv::imread(path_to_dataset + "/" + rgb_file);
        depthImage = cv::imread(path_to_dataset + "/" + depth_file, -1);

        if (index == 0){
            // 对第一帧提取FAST特征点
            vector<cv::KeyPoint> kps;
            //cv::Ptr<cv::FastFeatureDetector> detector = cv::FastFeatureDetector::create();
            cv::Ptr<cv::FeatureDetector> detector = cv::FeatureDetector::create ("ORB");   //opencv2 use this
            detector->detect(colorImage, kps);
            for (auto kp : kps) {
                keypoints.push_back(kp.pt);
            }
            last_colorImage = colorImage;
            continue;
        }

        if ( colorImage.data==nullptr || depthImage.data==nullptr ){
            continue;
        }

        // 对其他帧用LK跟踪特征点
        vector<cv::Point2f> next_keypoints; 
        vector<cv::Point2f> prev_keypoints;
        for (auto kp : keypoints) {
            prev_keypoints.push_back(kp);
        }
        vector<unsigned char> status;
        vector<float> error; 
        //起始时间
        chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
        cv::calcOpticalFlowPyrLK(last_colorImage, colorImage, prev_keypoints, next_keypoints, status, error);
        //光流结束时间
        chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
        chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>( t2-t1 );
        cout << "LK Flow use time:" << time_used.count() << " seconds." << endl;
        
        // 把跟丢的点删掉
        int i=0; 
        for (auto iter=keypoints.begin(); iter!=keypoints.end(); i++) {
            if (status[i] == 0){
                iter = keypoints.erase(iter);
                continue;
            }
            *iter = next_keypoints[i];
            iter++;
        }
        cout << "tracked keypoints: " << keypoints.size() << endl;

        //如果全部跟丢
        if (keypoints.size() == 0) {
            cout << "all keypoints are lost." << endl;
            break; 
        }

        // 画出 keypoints
        cv::Mat img_show = colorImage.clone();
        for (auto kp : keypoints) {
            cv::circle(img_show, kp, 12, cv::Scalar(0, 240, 0), 1);
        }
        cv::imshow("corners", img_show);
        cv::waitKey(0);
        last_colorImage = colorImage;
    }
    return 0;
}

(3)编译

data记得解压

mkdir build 
cd build
cmake ..
make
cd ..
./build/useLK ../data

在这里插入图片描述

在这里插入图片描述



8.5 实践:RGB-D的直接法

8.5.1 稀疏直接法

(1)代码详解

CMakeLists.txt

cmake_minimum_required( VERSION 2.8 )
project( directMethod )

set( CMAKE_BUILD_TYPE Release )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )

# 添加cmake模块路径
list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules )

find_package( OpenCV )
include_directories( ${OpenCV_INCLUDE_DIRS} )

find_package( G2O )
include_directories( ${G2O_INCLUDE_DIRS} ) 

include_directories( "/usr/include/eigen3" )

set( G2O_LIBS 
    g2o_core g2o_types_sba g2o_solver_csparse g2o_stuff g2o_csparse_extension 
)

add_executable( direct_sparse direct_sparse.cpp )
target_link_libraries( direct_sparse ${OpenCV_LIBS} ${G2O_LIBS} )

#add_executable( direct_semidense direct_semidense.cpp )
#target_link_libraries( direct_semidense ${OpenCV_LIBS} ${G2O_LIBS} )

directMethod.cpp

#include <iostream>
#include <fstream>
#include <list>
#include <vector>
#include <chrono>
#include <ctime>
#include <climits>

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>

#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <g2o/core/robust_kernel.h>
#include <g2o/types/sba/types_six_dof_expmap.h>

using namespace std;
using namespace g2o;

/********************************************
 * 本节演示了RGBD上的稀疏直接法 
 ********************************************/

// 一次测量的值,包括一个世界坐标系下三维点与一个灰度值
struct Measurement
{
    Measurement (Eigen::Vector3d p, float g) : pos_world (p), grayscale (g) {}
    Eigen::Vector3d pos_world;
    float grayscale;
};


inline Eigen::Vector3d project2Dto3D ( int x, int y, int d, float fx, float fy, float cx, float cy, float scale )
{
    float zz = float(d) / scale;
    float xx = zz * (x - cx) / fx;
    float yy = zz * (y - cy) / fy;
    return Eigen::Vector3d ( xx, yy, zz );
}


inline Eigen::Vector2d project3Dto2D ( float x, float y, float z, float fx, float fy, float cx, float cy )
{
    float u = fx*x/z + cx;
    float v = fy*y/z + cy;
    return Eigen::Vector2d ( u,v );
}


// 直接法估计位姿
// 输入:测量值(空间点的灰度),新的灰度图,相机内参; 输出:相机位姿
// 返回:true为成功,false失败
bool poseEstimationDirect ( const vector<Measurement>& measurements, cv::Mat* gray, Eigen::Matrix3f& intrinsics, Eigen::Isometry3d& Tcw );



// project a 3d point into an image plane, the error is photometric error
// an unary edge with one vertex SE3Expmap (the pose of camera)
//定义直接法的边
class EdgeSE3ProjectDirect: public BaseUnaryEdge< 1, double, VertexSE3Expmap>
{
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW

    EdgeSE3ProjectDirect() {}

    EdgeSE3ProjectDirect ( Eigen::Vector3d point, float fx, float fy, float cx, float cy, cv::Mat* image )
        : x_world_(point), fx_(fx), fy_(fy), cx_(cx), cy_(cy), image_(image) {}

    virtual void computeError() {
        const VertexSE3Expmap* v = static_cast<const VertexSE3Expmap*> (_vertices[0]);
        Eigen::Vector3d x_local = v->estimate().map(x_world_);
        float x = x_local[0]*fx_/x_local[2] + cx_;
        float y = x_local[1]*fy_/x_local[2] + cy_;
        // check x,y is in the image
        if ( x-4<0 || (x+4)>image_->cols || (y-4)<0 || (y+4)>image_->rows ) {
            _error ( 0,0 ) = 0.0;
            this->setLevel ( 1 );
        }
        else {
            _error ( 0,0 ) = getPixelValue ( x,y ) - _measurement;
        }
    }

    // plus in manifold
    virtual void linearizeOplus( ){
        if ( level() == 1 ) {
            _jacobianOplusXi = Eigen::Matrix<double, 1, 6>::Zero();
            return;
        }
        VertexSE3Expmap* vtx = static_cast<VertexSE3Expmap*> ( _vertices[0] );
        Eigen::Vector3d xyz_trans = vtx->estimate().map (x_world_); // q in book

        double x = xyz_trans[0];
        double y = xyz_trans[1];
        double invz = 1.0/xyz_trans[2];
        double invz_2 = invz*invz;

        float u = x*fx_*invz + cx_;
        float v = y*fy_*invz + cy_;

        // jacobian from se3 to u,v
        // NOTE that in g2o the Lie algebra is (\omega, \epsilon), where \omega is so(3) and \epsilon the translation
        Eigen::Matrix<double, 2, 6> jacobian_uv_ksai;

        jacobian_uv_ksai ( 0,0 ) = - x*y*invz_2 *fx_;
        jacobian_uv_ksai ( 0,1 ) = ( 1+ ( x*x*invz_2 ) ) *fx_;
        jacobian_uv_ksai ( 0,2 ) = - y*invz *fx_;
        jacobian_uv_ksai ( 0,3 ) = invz *fx_;
        jacobian_uv_ksai ( 0,4 ) = 0;
        jacobian_uv_ksai ( 0,5 ) = -x*invz_2 *fx_;

        jacobian_uv_ksai ( 1,0 ) = - ( 1+y*y*invz_2 ) *fy_;
        jacobian_uv_ksai ( 1,1 ) = x*y*invz_2 *fy_;
        jacobian_uv_ksai ( 1,2 ) = x*invz *fy_;
        jacobian_uv_ksai ( 1,3 ) = 0;
        jacobian_uv_ksai ( 1,4 ) = invz *fy_;
        jacobian_uv_ksai ( 1,5 ) = -y*invz_2 *fy_;

        Eigen::Matrix<double, 1, 2> jacobian_pixel_uv;

        jacobian_pixel_uv(0,0) = (getPixelValue(u+1,v)-getPixelValue(u-1,v))/2;
        jacobian_pixel_uv(0,1) = (getPixelValue(u,v+1)-getPixelValue(u,v-1))/2;

        _jacobianOplusXi = jacobian_pixel_uv * jacobian_uv_ksai;
    }

    // dummy read and write functions because we don't care...
    virtual bool read ( std::istream& in ) {}
    virtual bool write ( std::ostream& out ) const {}


protected:
    // get a gray scale value from reference image (bilinear interpolated)
    inline float getPixelValue ( float x, float y ) {
        uchar* data = & image_->data[int(y) * image_->step + int(x)];
        float xx = x - floor ( x );
        float yy = y - floor ( y );
        return float (
                   (1-xx)*(1-yy)*data[0] + xx*(1-yy)*data[1] +
                   (1-xx)*yy*data[image_->step] + xx*yy*data[image_->step+1]);
    }


public:
    Eigen::Vector3d x_world_;         // 3D point in world frame
    float cx_=0, cy_=0, fx_=0, fy_=0; // Camera intrinsics
    cv::Mat* image_=nullptr;          // reference image
};




int main ( int argc, char** argv )
{
    if (argc != 2){
        cout << "usage: useLK path_to_dataset" << endl;
        return 1;
    }

    srand ((unsigned int)time(0));
    string path_to_dataset = argv[1];
    string associate_file = path_to_dataset + "/associate.txt";
    ifstream fin (associate_file);

    string rgb_file, depth_file, time_rgb, time_depth;
    cv::Mat color, depth, gray;
    vector<Measurement> measurements;

    // 相机内参
    float cx = 325.5;
    float cy = 253.5;
    float fx = 518.0;
    float fy = 519.0;
    float depth_scale = 1000.0;
    Eigen::Matrix3f K;
    K << fx,0.f,cx,0.f,fy,cy,0.f,0.f,1.0f;  //构造内参矩阵

    Eigen::Isometry3d Tcw = Eigen::Isometry3d::Identity();

    cv::Mat prev_color;
    // 我们以第一个图像为参考,对后续图像和参考图像做直接法
    for (int index = 0; index < 10; index++) {
        cout << "*********** loop " << index << " ************" << endl;
        fin >> time_rgb >> rgb_file >> time_depth >> depth_file;
        color = cv::imread (path_to_dataset + "/" + rgb_file);
        depth = cv::imread (path_to_dataset + "/" + depth_file, -1);

        if ( color.data==nullptr || depth.data==nullptr )
            continue; 
        cv::cvtColor (color, gray, cv::COLOR_BGR2GRAY);

        if (index == 0) {
            // 对第一帧提取FAST特征点
            vector<cv::KeyPoint> keypoints;
            //cv::Ptr<cv::FastFeatureDetector> detector = cv::FastFeatureDetector::create();
            cv::Ptr<cv::FeatureDetector> detector = cv::FeatureDetector::create ("ORB");   //opencv2 use this
            detector->detect (color, keypoints);
            for (auto kp : keypoints) {
                // 去掉邻近边缘处的点
                if (kp.pt.x<20 || kp.pt.y<20 || (kp.pt.x+20)>color.cols || (kp.pt.y+20)>color.rows)   continue;
                
                ushort d = depth.ptr<ushort> (cvRound(kp.pt.y)) [cvRound (kp.pt.x)];
                if (d == 0)   continue;
                   
                Eigen::Vector3d p3d = project2Dto3D ( kp.pt.x, kp.pt.y, d, fx, fy, cx, cy, depth_scale );
                float grayscale = float ( gray.ptr<uchar> ( cvRound ( kp.pt.y ) ) [ cvRound ( kp.pt.x ) ] );
                measurements.push_back(Measurement(p3d, grayscale));
            }

            prev_color = color.clone();
            continue;
        }

        // 使用直接法计算相机运动
        chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
        poseEstimationDirect (measurements, &gray, K, Tcw);  //直接法
        chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
        chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>> (t2-t1);
        cout<<"direct method costs time: "<<time_used.count() <<"seconds."<<endl;
        cout << "Tcw=" << Tcw.matrix() << endl;

        // plot the feature points
        cv::Mat img_show (color.rows*2, color.cols, CV_8UC3);
        prev_color.copyTo(img_show(cv::Rect (0, 0, color.cols, color.rows)));
        color.copyTo(img_show(cv::Rect(0, color.rows, color.cols, color.rows)));

        for (Measurement m : measurements) {
            if ( rand() > RAND_MAX/5 )
                continue;
            Eigen::Vector3d p = m.pos_world;
            Eigen::Vector2d pixel_prev = project3Dto2D (p(0,0), p(1,0), p(2,0), fx, fy, cx, cy);
            Eigen::Vector3d p2 = Tcw * m.pos_world;
            Eigen::Vector2d pixel_now = project3Dto2D (p2(0,0), p2(1,0), p2(2,0), fx, fy, cx, cy);
            if (pixel_now(0,0)<0 || pixel_now(0,0)>=color.cols || 
            pixel_now(1,0)<0 || pixel_now(1,0)>=color.rows)  continue;

            float b = 255 * float(rand()) / RAND_MAX;
            float g = 255 * float(rand()) / RAND_MAX;
            float r = 255 * float(rand()) / RAND_MAX;
            cv::circle (img_show, cv::Point2d(pixel_prev(0,0), pixel_prev(1,0)), 8, cv::Scalar(b,g,r), 2);
            cv::circle(img_show, cv::Point2d(pixel_now(0,0), pixel_now(1,0) +color.rows), 8, cv::Scalar(b,g,r), 2);
            cv::line (img_show, cv::Point2d(pixel_prev(0,0), pixel_prev(1,0)), cv::Point2d(pixel_now(0,0), pixel_now(1,0)+color.rows), cv::Scalar (b,g,r), 1);
        }
        cv::imshow ( "result", img_show );
        cv::waitKey ( 0 );

    }
    return 0;
}



//直接法实现位姿估计
bool poseEstimationDirect ( const vector< Measurement >& measurements, cv::Mat* gray, Eigen::Matrix3f& K, Eigen::Isometry3d& Tcw ) {
    // 初始化g2o
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<6,1>> DirectBlock;  // 求解的向量是6*1的
    DirectBlock::LinearSolverType* linearSolver = new g2o::LinearSolverDense< DirectBlock::PoseMatrixType > ();
    DirectBlock* solver_ptr = new DirectBlock ( linearSolver );
    // g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); // G-N  高斯牛顿法
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr ); // L-M
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm ( solver );
    optimizer.setVerbose( true );

    g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap();
    pose->setEstimate ( g2o::SE3Quat ( Tcw.rotation(), Tcw.translation() ) );
    pose->setId ( 0 );
    optimizer.addVertex ( pose );

    // 添加边
    int id = 1;
    for (Measurement m : measurements) {
        EdgeSE3ProjectDirect* edge = new EdgeSE3ProjectDirect (
            m.pos_world, K(0,0), K(1,1), K(0,2), K(1,2), gray);
        edge->setVertex ( 0, pose );
        edge->setMeasurement ( m.grayscale );
        edge->setInformation ( Eigen::Matrix<double,1,1>::Identity() );
        edge->setId ( id++ );
        optimizer.addEdge ( edge );
    }
    cout << "edges in graph: " << optimizer.edges().size() << endl;
    optimizer.initializeOptimization();
    optimizer.optimize ( 30 );
    Tcw = pose->estimate();
}

(2)编译

mkdir build
cd build
cmake ..
make 
cd ..
./build/direct_sparse ../data

在这里插入图片描述

8.5.4 半稠密直接法

(1)代码详解

CMakeLists.txt

cmake_minimum_required( VERSION 2.8 )
project( directMethod )

set( CMAKE_BUILD_TYPE Release )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )

# 添加cmake模块路径
list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules )

find_package( OpenCV )
include_directories( ${OpenCV_INCLUDE_DIRS} )

find_package( G2O )
include_directories( ${G2O_INCLUDE_DIRS} ) 

include_directories( "/usr/include/eigen3" )

set( G2O_LIBS 
    g2o_core g2o_types_sba g2o_solver_csparse g2o_stuff g2o_csparse_extension 
)

#add_executable( direct_sparse direct_sparse.cpp )
#target_link_libraries( direct_sparse ${OpenCV_LIBS} ${G2O_LIBS} )

add_executable( direct_semidense direct_semidense.cpp )
target_link_libraries( direct_semidense ${OpenCV_LIBS} ${G2O_LIBS} )

directMethod.cpp

#include <iostream>
#include <fstream>
#include <list>
#include <vector>
#include <chrono>
#include <ctime>
#include <climits>

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>

#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <g2o/core/robust_kernel.h>
#include <g2o/types/sba/types_six_dof_expmap.h>

using namespace std;
using namespace g2o;

/********************************************
 * 本节演示了RGBD上的半稠密直接法 
 ********************************************/

// 一次测量的值,包括一个世界坐标系下三维点与一个灰度值
struct Measurement
{
    Measurement(Eigen::Vector3d p, float g) : pos_world (p), grayscale (g) {}
    Eigen::Vector3d pos_world;
    float grayscale;
};


inline Eigen::Vector3d project2Dto3D ( int x, int y, int d, float fx, float fy, float cx, float cy, float scale ) {
    float zz = float ( d ) /scale;
    float xx = zz* ( x-cx ) /fx;
    float yy = zz* ( y-cy ) /fy;
    return Eigen::Vector3d ( xx, yy, zz );
}


inline Eigen::Vector2d project3Dto2D ( float x, float y, float z, float fx, float fy, float cx, float cy ) {
    float u = fx*x/z+cx;
    float v = fy*y/z+cy;
    return Eigen::Vector2d ( u,v );
}

// 直接法估计位姿
// 输入:测量值(空间点的灰度),新的灰度图,相机内参; 输出:相机位姿
// 返回:true为成功,false失败
bool poseEstimationDirect ( const vector<Measurement>& measurements, cv::Mat* gray, Eigen::Matrix3f& intrinsics, Eigen::Isometry3d& Tcw );


// project a 3d point into an image plane, the error is photometric error
// an unary edge with one vertex SE3Expmap (the pose of camera)
class EdgeSE3ProjectDirect: public BaseUnaryEdge< 1, double, VertexSE3Expmap>
{
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW

    EdgeSE3ProjectDirect() {}

    EdgeSE3ProjectDirect ( Eigen::Vector3d point, float fx, float fy, float cx, float cy, cv::Mat* image )
        : x_world_ ( point ), fx_ ( fx ), fy_ ( fy ), cx_ ( cx ), cy_ ( cy ), image_ ( image )
    {}

    virtual void computeError()
    {
        const VertexSE3Expmap* v  =static_cast<const VertexSE3Expmap*> ( _vertices[0] );
        Eigen::Vector3d x_local = v->estimate().map ( x_world_ );
        float x = x_local[0]*fx_/x_local[2] + cx_;
        float y = x_local[1]*fy_/x_local[2] + cy_;
        // check x,y is in the image
        if ( x-4<0 || ( x+4 ) >image_->cols || ( y-4 ) <0 || ( y+4 ) >image_->rows )
        {
            _error ( 0,0 ) = 0.0;
            this->setLevel ( 1 );
        }
        else
        {
            _error ( 0,0 ) = getPixelValue ( x,y ) - _measurement;
        }
    }

    // plus in manifold
    virtual void linearizeOplus( )
    {
        if ( level() == 1 )
        {
            _jacobianOplusXi = Eigen::Matrix<double, 1, 6>::Zero();
            return;
        }
        VertexSE3Expmap* vtx = static_cast<VertexSE3Expmap*> ( _vertices[0] );
        Eigen::Vector3d xyz_trans = vtx->estimate().map ( x_world_ );   // q in book

        double x = xyz_trans[0];
        double y = xyz_trans[1];
        double invz = 1.0/xyz_trans[2];
        double invz_2 = invz*invz;

        float u = x*fx_*invz + cx_;
        float v = y*fy_*invz + cy_;

        // jacobian from se3 to u,v
        // NOTE that in g2o the Lie algebra is (\omega, \epsilon), where \omega is so(3) and \epsilon the translation
        Eigen::Matrix<double, 2, 6> jacobian_uv_ksai;

        jacobian_uv_ksai ( 0,0 ) = - x*y*invz_2 *fx_;
        jacobian_uv_ksai ( 0,1 ) = ( 1+ ( x*x*invz_2 ) ) *fx_;
        jacobian_uv_ksai ( 0,2 ) = - y*invz *fx_;
        jacobian_uv_ksai ( 0,3 ) = invz *fx_;
        jacobian_uv_ksai ( 0,4 ) = 0;
        jacobian_uv_ksai ( 0,5 ) = -x*invz_2 *fx_;

        jacobian_uv_ksai ( 1,0 ) = - ( 1+y*y*invz_2 ) *fy_;
        jacobian_uv_ksai ( 1,1 ) = x*y*invz_2 *fy_;
        jacobian_uv_ksai ( 1,2 ) = x*invz *fy_;
        jacobian_uv_ksai ( 1,3 ) = 0;
        jacobian_uv_ksai ( 1,4 ) = invz *fy_;
        jacobian_uv_ksai ( 1,5 ) = -y*invz_2 *fy_;

        Eigen::Matrix<double, 1, 2> jacobian_pixel_uv;

        jacobian_pixel_uv ( 0,0 ) = ( getPixelValue ( u+1,v )-getPixelValue ( u-1,v ) ) /2;
        jacobian_pixel_uv ( 0,1 ) = ( getPixelValue ( u,v+1 )-getPixelValue ( u,v-1 ) ) /2;

        _jacobianOplusXi = jacobian_pixel_uv*jacobian_uv_ksai;
    }

    // dummy read and write functions because we don't care...
    virtual bool read ( std::istream& in ) {}
    virtual bool write ( std::ostream& out ) const {}


protected:
    // get a gray scale value from reference image (bilinear interpolated)
    inline float getPixelValue ( float x, float y )
    {
        uchar* data = & image_->data[ int ( y ) * image_->step + int ( x ) ];
        float xx = x - floor ( x );
        float yy = y - floor ( y );
        return float (
                   ( 1-xx ) * ( 1-yy ) * data[0] +
                   xx* ( 1-yy ) * data[1] +
                   ( 1-xx ) *yy*data[ image_->step ] +
                   xx*yy*data[image_->step+1]
               );
    }


public:
    Eigen::Vector3d x_world_;   // 3D point in world frame
    float cx_=0, cy_=0, fx_=0, fy_=0; // Camera intrinsics
    cv::Mat* image_=nullptr;    // reference image
};




int main ( int argc, char** argv )
{
    if ( argc != 2 ) {
        cout << "usage: useLK path_to_dataset" << endl;
        return 1;
    }
    srand ( ( unsigned int ) time ( 0 ) );
    string path_to_dataset = argv[1];
    string associate_file = path_to_dataset + "/associate.txt";

    ifstream fin ( associate_file );

    string rgb_file, depth_file, time_rgb, time_depth;
    cv::Mat color, depth, gray;
    vector<Measurement> measurements;
    
    // 相机内参
    float cx = 325.5;
    float cy = 253.5;
    float fx = 518.0;
    float fy = 519.0;
    float depth_scale = 1000.0;
    Eigen::Matrix3f K;
    K<<fx,0.f,cx,0.f,fy,cy,0.f,0.f,1.0f;

    Eigen::Isometry3d Tcw = Eigen::Isometry3d::Identity();

    cv::Mat prev_color;
    // 我们以第一个图像为参考,对后续图像和参考图像做直接法
    for ( int index=0; index<10; index++ ) {
        cout << "*********** loop " << index << " ************" << endl;
        fin >> time_rgb >> rgb_file >> time_depth >> depth_file;
        color = cv::imread(path_to_dataset + "/" + rgb_file);
        depth = cv::imread(path_to_dataset + "/" + depth_file, -1);
        
        if ( color.data==nullptr || depth.data==nullptr )
            continue; 
        cv::cvtColor ( color, gray, cv::COLOR_BGR2GRAY );
        
        if ( index ==0 ) {
            // select the pixels with high gradiants 
            for ( int x=10; x<gray.cols-10; x++ )
                for ( int y=10; y<gray.rows-10; y++ ) {
                    Eigen::Vector2d delta (
                        gray.ptr<uchar>(y)[x+1] - gray.ptr<uchar>(y)[x-1], 
                        gray.ptr<uchar>(y+1)[x] - gray.ptr<uchar>(y-1)[x]
                    );
                    if ( delta.norm() < 50 )
                        continue;
                    ushort d = depth.ptr<ushort> (y)[x];
                    if ( d==0 )
                        continue;
                    Eigen::Vector3d p3d = project2Dto3D ( x, y, d, fx, fy, cx, cy, depth_scale );
                    float grayscale = float ( gray.ptr<uchar> (y) [x] );
                    measurements.push_back ( Measurement ( p3d, grayscale ) );
                }
            prev_color = color.clone();
            cout<<"add total "<<measurements.size()<<" measurements."<<endl;
            continue;
        }

        // 使用直接法计算相机运动
        chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
        poseEstimationDirect ( measurements, &gray, K, Tcw );
        chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
        chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>> ( t2-t1 );
        cout<<"direct method costs time: "<<time_used.count()<<" seconds."<<endl;
        cout << "Tcw=" << Tcw.matrix() << endl;

        // plot the feature points
        cv::Mat img_show ( color.rows*2, color.cols, CV_8UC3 );
        prev_color.copyTo(img_show(cv::Rect(0,0,color.cols, color.rows)));
        color.copyTo(img_show(cv::Rect(0,color.rows,color.cols, color.rows)));
        for (Measurement m : measurements) {
            if ( rand() > RAND_MAX/5 )
                continue;
            Eigen::Vector3d p = m.pos_world;
            Eigen::Vector2d pixel_prev = project3Dto2D ( p ( 0,0 ), p ( 1,0 ), p ( 2,0 ), fx, fy, cx, cy );
            Eigen::Vector3d p2 = Tcw*m.pos_world;
            Eigen::Vector2d pixel_now = project3Dto2D ( p2 ( 0,0 ), p2 ( 1,0 ), p2 ( 2,0 ), fx, fy, cx, cy );
            if ( pixel_now(0,0)<0 || pixel_now(0,0)>=color.cols || pixel_now(1,0)<0 || pixel_now(1,0)>=color.rows )
                continue;

            float b = 0;
            float g = 250;
            float r = 0;
            img_show.ptr<uchar>( pixel_prev(1,0) )[int(pixel_prev(0,0))*3] = b;
            img_show.ptr<uchar>( pixel_prev(1,0) )[int(pixel_prev(0,0))*3+1] = g;
            img_show.ptr<uchar>( pixel_prev(1,0) )[int(pixel_prev(0,0))*3+2] = r;
            
            img_show.ptr<uchar>( pixel_now(1,0)+color.rows )[int(pixel_now(0,0))*3] = b;
            img_show.ptr<uchar>( pixel_now(1,0)+color.rows )[int(pixel_now(0,0))*3+1] = g;
            img_show.ptr<uchar>( pixel_now(1,0)+color.rows )[int(pixel_now(0,0))*3+2] = r;
            cv::circle ( img_show, cv::Point2d ( pixel_prev ( 0,0 ), pixel_prev ( 1,0 ) ), 4, cv::Scalar ( b,g,r ), 2 );
            cv::circle ( img_show, cv::Point2d ( pixel_now ( 0,0 ), pixel_now ( 1,0 ) +color.rows ), 4, cv::Scalar ( b,g,r ), 2 );
        }
        cv::imshow ( "result", img_show );
        cv::waitKey ( 0 );

    }
    return 0;
}


bool poseEstimationDirect ( const vector< Measurement >& measurements, cv::Mat* gray, Eigen::Matrix3f& K, Eigen::Isometry3d& Tcw )
{
    // 初始化g2o
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<6,1>> DirectBlock;  // 求解的向量是6*1的
    DirectBlock::LinearSolverType* linearSolver = new g2o::LinearSolverDense< DirectBlock::PoseMatrixType > ();
    DirectBlock* solver_ptr = new DirectBlock ( linearSolver );
    // g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); // G-N
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr ); // L-M
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm ( solver );
    optimizer.setVerbose( true );

    g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap();
    pose->setEstimate ( g2o::SE3Quat ( Tcw.rotation(), Tcw.translation() ) );
    pose->setId ( 0 );
    optimizer.addVertex ( pose );

    // 添加边
    int id=1;
    for ( Measurement m : measurements )
    {
        EdgeSE3ProjectDirect* edge = new EdgeSE3ProjectDirect (
            m.pos_world,
            K ( 0,0 ), K ( 1,1 ), K ( 0,2 ), K ( 1,2 ), gray
        );
        edge->setVertex ( 0, pose );
        edge->setMeasurement ( m.grayscale );
        edge->setInformation ( Eigen::Matrix<double,1,1>::Identity() );
        edge->setId ( id++ );
        optimizer.addEdge ( edge );
    }
    cout<<"edges in graph: "<<optimizer.edges().size() <<endl;
    optimizer.initializeOptimization();
    optimizer.optimize ( 30 );
    Tcw = pose->estimate();
}

(2)编译

mkdir build
cd build
cmake ..
make
cd ..
./build/direct_semidense ../data

在这里插入图片描述

  C++知识库 最新文章
【C++】友元、嵌套类、异常、RTTI、类型转换
通讯录的思路与实现(C语言)
C++PrimerPlus 第七章 函数-C++的编程模块(
Problem C: 算法9-9~9-12:平衡二叉树的基本
MSVC C++ UTF-8编程
C++进阶 多态原理
简单string类c++实现
我的年度总结
【C语言】以深厚地基筑伟岸高楼-基础篇(六
c语言常见错误合集
上一篇文章      下一篇文章      查看所有文章
加:2022-02-06 13:38:43  更:2022-02-06 13:41:07 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/24 8:32:09-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码