题目 题意: 求一颗n层的满k叉树,求任意两点之间距离和等于多少. 思路: 可以暴力也可以推公式,不会推。暴力做法为,对于同一层的每条边,贡献相同。而该边的贡献为cnt左边的点 * cnt右边的点.
时间复杂度: O(n) 代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<complex>
#include<cstring>
#include<cmath>
#include<vector>
#include<map>
#include<unordered_map>
#include<list>
#include<set>
#include<queue>
#include<stack>
#define OldTomato ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr)
#define fir(i,a,b) for(int i=a;i<=b;++i)
#define mem(a,x) memset(a,x,sizeof(a))
#define p_ priority_queue
using namespace std;
typedef complex<double> CP;
typedef pair<int,int> PII;
typedef long long ll;
const double pi = acos(-1.0);
const int INF = 0x3f3f3f3f;
const ll inf = 1e18;
const int N = 2e5+10;
const int M = 1e6+10;
const int mod = 1e9+7;
const double eps = 1e-6;
inline int lowbit(int x){ return x&(-x);}
template<typename T>void write(T x)
{
if(x<0)
{
putchar('-');
x=-x;
}
if(x>9)
{
write(x/10);
}
putchar(x%10+'0');
}
template<typename T> void read(T &x)
{
x = 0;char ch = getchar();ll f = 1;
while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
#define int long long
int n,m,k,T;
int f[M];
int s[M];
void solve()
{
read(n); read(k);
int sum = 0;
int ans = 0;
f[0] = 1;
s[0] = 1;
for(int i=1;i<=n;++i) f[i] = f[i-1] * k % mod,s[i] = (s[i-1] + f[i]) % mod;
sum = s[n-1];
for(int i=1;i<=n-1;++i)
{
ans = (ans + f[n-i] * s[i-1] % mod * (sum-s[i-1]) % mod) % mod;
}
ans = (ans + mod) % mod;
write(ans);
}
signed main(void)
{
T = 1;
while(T--)
{
solve();
}
return 0;
}
|