// Problem: 矩阵消除游戏
// Contest: NowCoder
// URL: https://ac.nowcoder.com/acm/contest/20960/1045
// Memory Limit: 524288 MB
// Time Limit: 2000 ms
// 2022-03-01 19:19:12
//
// Powered by CP Editor (https://cpeditor.org)
#include<bits/stdc++.h>
using namespace std;
#define rep(i,l,r) for(int i=(l);i<=(r);i++)
#define per(i,l,r) for(int i=(l);i>=(r);i--)
#define ll long long
#define pii pair<int, int>
#define mset(s,t) memset(s,t,sizeof(t))
#define mcpy(s,t) memcpy(s,t,sizeof(t))
#define fi first
#define se second
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define mp make_pair
const ll mod = 1e9 + 7;
inline ll qmi (ll a, ll b) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a%mod;
a = a * a %mod;
b >>= 1;
}
return ans;
}
inline int read () {
int x = 0, f = 0;
char ch = getchar();
while (!isdigit(ch)) f |= (ch=='-'),ch= getchar();
while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
return f?-x:x;
}
template<typename T> void print(T x) {
if (x < 0) putchar('-'), x = -x;
if (x >= 10) print(x/10);
putchar(x % 10 + '0');
}
inline ll sub (ll a, ll b) {
return ((a - b ) %mod + mod) %mod;
}
inline ll add (ll a, ll b) {
return (a + b) %mod;
}
inline ll inv (ll a) {
return qmi(a, mod - 2);
}
#define int long long
int n, m, k;
int a[20][20], b[20][20];
int h[29], l[20];
void solve() {
cin >> n >> m >> k;
int sum = 0;
for (int i = 0;i < n; i ++) {
for (int j = 0; j < m; j ++)
{
cin >> a[i][j];
h[i] +=a[i][j];
sum += a[i][j];
}
}
if (k >= min(n, m)) {
cout << sum << endl;
return;
}
int ans = 0;
for (int i = 0; i < (1 << n); i ++) {
int mx = 0, cnt = 0;
memcpy(b, a, sizeof b);
for (int j = 0; j < n; j ++)
if (i >> j & 1) {
mx += h[j];
cnt ++;
for (int kk = 0; kk < m; kk ++)
b[j][kk] = 0;
}
if (cnt > k) continue;
memset(l, 0, sizeof l);
for (int j = 0; j < m; j ++) {
for (int k = 0; k < n; k ++)
l[j] += b[k][j];
}
sort(l, l + m, greater<int>());
for (int kk = 0; kk < k - cnt; kk ++)
mx += l[kk];
ans = max (ans, mx);
}
cout << ans << endl;
}
signed main () {
int t;
t =1;
//cin >> t;
while (t --) solve();
return 0;
}
由于最终一定是选择了一部分列和一部分行。因此我们可以先确定行的选法然后从大到小选则列。 由于n<=15所以可以用二进制枚举
|