F - Card Game for Three
显然要出现n张a在m + 1张b、k + 1张c之前,使得Alice获胜,游戏结束。
考虑枚举b和c一共出现i次,以及把这i次插入a中(得在最后1个a之前),之后剩余牌即可任选的方案数,为C(n + i - 1, i) * 3 ^ (m + k - i)
再考虑这i次中b和c分别出现几次,此时限制为b小于等于m次,c小于等于k次。发现这个东西是可以随着i增大O(1)维护的,不妨记这个东西为t,则(i - 1) -> i,t = t * 2 - C(i - 1, m) - C(i - 1, k)
#include<bits/stdc++.h>
#define pii pair<int,int>
#define fi first
#define sc second
#define pb push_back
#define ll long long
#define trav(v,x) for(auto v:x)
#define all(x) (x).begin(), (x).end()
#define VI vector<int>
#define VLL vector<ll>
#define pll pair<ll, ll>
#define double long double
//#define int long long
using namespace std;
const int N = 1e6 + 100;
const int inf = 1e9;
//const ll inf = 1e18;
const ll mod = 1e9 + 7;
#ifdef LOCAL
void debug_out(){cerr << endl;}
template<typename Head, typename... Tail>
void debug_out(Head H, Tail... T)
{
cerr << " " << to_string(H);
debug_out(T...);
}
#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif
void sol()
{
int n, m, k;
cin >> n >> m >> k;
VLL fac(N + 1);
fac[0] = 1;
for(int i = 1; i <= N; i++)
fac[i] = fac[i - 1] * i % mod;
VLL ifac(N);
auto qpow = [&](ll x, ll y = mod - 2)
{
ll res = 1;
while(y)
{
if(y & 1)
res = res * x % mod;
x = x * x % mod;
y >>= 1;
}
return res;
};
ifac[N] = qpow(fac[N]);
for(int i = N - 1; i >= 0; i--)
ifac[i] = ifac[i + 1] * (i + 1) % mod;
auto C = [&](ll x, ll y)
{
if(y < 0)
return 0LL;
if(x < y)
return 0LL;
return fac[x] * ifac[y] % mod * ifac[x - y] % mod;
};
VLL pw(N + 1);
pw[0] = 1;
for(int i = 1; i <= N; i++)
pw[i] = pw[i - 1] * 3 % mod;
ll ans = 0, t;
for(int i = 0; i <= m + k; i++)
{
ll nw = C(n + i - 1, i) * pw[m + k - i] % mod;
if(i == 0)
{
t = 1;
}
else
{
t = t * 2 % mod;
if((i - 1) >= m)
t = (t + mod - C(i - 1, m)) % mod;
if((i - 1) >= k)
t = (t + mod - C(i - 1, i - 1 - k)) % mod;
}
//cerr << i << ' ' << s << ' ' << t << '\n';
ans = (ans + nw * t) % mod;
}
cout << ans << '\n';
}
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);
// int tt;
// cin >> tt;
// while(tt--)
sol();
}
|