Merkle Tree 构建(C++实现)
区块链学习笔记(一)
一、相关知识简要介绍
Merkle Tree,通常也被称作Hash Tree,顾名思义,就是存储hash值的一棵树。Merkle树的叶子是数据块(例如,文件或者文件的集合)的hash值。非叶节点是其对应子节点串联字符串的hash,下图为一个简单的Merkle树的结构。
在比特币网络中,Merkle树被用来归纳一个区块中的所有交易,同时生成整个交易集合的数字指纹,且提供了一种校验区块是否存在某交易的高效途径。
Hash是一个把任意长度的数据映射成固定长度数据的函数。例如,对于数据完整性校验,最简单的方法是对整个数据做Hash运算得到固定长度的Hash值,然后把得到的Hash值公布在网上,这样用户下载到数据之后,对数据再次进行Hash运算,比较运算结果和网上公布的Hash值进行比较,如果两个Hash值相等,说明下载的数据没有损坏。可以这样做是因为输入数据的稍微改变就会引起Hash运算结果的面目全非,而且根据Hash值反推原始输入数据的特征是困难的。
生成一棵完整的Merkle树需要递归地对Hash节点对进行Hash,并将新生成的hash节点插入到Merkle树中,直到只剩一个Hash节点,该节点就是Merkle 树的根。在比特币的 Merkle树中两次使用到了SHA256算法,因此其加密哈希算法也被称为 double-SHA256。
(本次Merkle Tree构建过程使用的hash函数为SHA-256)
二、Merkle Tree构建及检验相关代码
1.<node.h>
#pragma once
#include <iostream>
#include <sstream>
#include "sha256.h"
#include <string>
#include <vector>
using namespace std;
class node
{
private:
string hash_str;
node* parent;
node* children[2];
public:
node();
node* getParent();
void setChildren(node* children_l, node* children_r);
node* getChildren(int index);
void setParent(node* parent);
string getHash();
int checkDir();
node* getSibling();
void setHash(string hash_str);
virtual ~node();
};
node::node()
{
parent = nullptr;
children[0] = nullptr;
children[1] = nullptr;
}
void node::setHash(string hash_str)
{
this->hash_str = sha2::hash256_hex_string(hash_str);
}
node* node::getParent()
{
return parent;
}
void node::setParent(node* parent)
{
this->parent = parent;
}
void node::setChildren(node* children_l, node* children_r)
{
children[0] = children_l;
children[1] = children_r;
}
node* node::getSibling()
{
node* parent = getParent();
return parent->getChildren(0) == this ? parent->getChildren(1) : parent->getChildren(0);
}
node* node::getChildren(int index)
{
return index <= 1 ? children[index] : nullptr;
}
string node::getHash()
{
return hash_str;
}
int node::checkDir()
{
return parent->getChildren(0) == this ? 0 : 1;
}
node::~node() {}
2.<sha256.h>
#pragma once
#ifndef PICOSHA2_H
#define PICOSHA2_H
#ifndef PICOSHA2_BUFFER_SIZE_FOR_INPUT_ITERATOR
#define PICOSHA2_BUFFER_SIZE_FOR_INPUT_ITERATOR \1048576
#endif
#include <algorithm>
#include <cassert>
#include <iterator>
#include <sstream>
#include <vector>
namespace sha2 {
typedef unsigned long ulong;
typedef unsigned char uchar;
static const size_t k_digest_size = 32;
namespace detail {
inline uchar mask_8bit(uchar x) { return x & 0xff; }
inline ulong mask_32bit(ulong x) { return x & 0xffffffff; }
const ulong add_constant[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786,0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b,0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 };
const ulong initial_message_digest[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
inline ulong ch(ulong x, ulong y, ulong z) {
return (x & y) ^ ((~x) & z);
}
inline ulong maj(ulong x, ulong y, ulong z) {
return (x & y) ^ (x & z) ^ (y & z);
}
inline ulong rotr(ulong x, std::size_t n) {
assert(n < 32);
return mask_32bit((x >> n) | (x << (32 - n)));
}
inline ulong bsig0(ulong x) {
return rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22);
}
inline ulong bsig1(ulong x) {
return rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25);
}
inline ulong shr(ulong x, std::size_t n) {
assert(n < 32);
return x >> n;
}
inline ulong ssig0(ulong x) {
return rotr(x, 7) ^ rotr(x, 18) ^ shr(x, 3);
}
inline ulong ssig1(ulong x) {
return rotr(x, 17) ^ rotr(x, 19) ^ shr(x, 10);
}
template <typename RaIter1, typename RaIter2>
void hash256_block(RaIter1 message_digest, RaIter2 first, RaIter2 last) {
assert(first + 64 == last);
static_cast<void>(last);
ulong w[64];
std::fill(w, w + 64, 0);
for (std::size_t i = 0; i < 16; ++i) {
w[i] = (static_cast<ulong>(mask_8bit(*(first + i * 4))) << 24) |
(static_cast<ulong>(mask_8bit(*(first + i * 4 + 1))) << 16) |
(static_cast<ulong>(mask_8bit(*(first + i * 4 + 2))) << 8) |
(static_cast<ulong>(mask_8bit(*(first + i * 4 + 3))));
}
for (std::size_t i = 16; i < 64; ++i) {
w[i] = mask_32bit(ssig1(w[i - 2]) + w[i - 7] + ssig0(w[i - 15]) +
w[i - 16]);
}
ulong a = *message_digest;
ulong b = *(message_digest + 1);
ulong c = *(message_digest + 2);
ulong d = *(message_digest + 3);
ulong e = *(message_digest + 4);
ulong f = *(message_digest + 5);
ulong g = *(message_digest + 6);
ulong h = *(message_digest + 7);
for (std::size_t i = 0; i < 64; ++i) {
ulong temp1 = h + bsig1(e) + ch(e, f, g) + add_constant[i] + w[i];
ulong temp2 = bsig0(a) + maj(a, b, c);
h = g;
g = f;
f = e;
e = mask_32bit(d + temp1);
d = c;
c = b;
b = a;
a = mask_32bit(temp1 + temp2);
}
*message_digest += a;
*(message_digest + 1) += b;
*(message_digest + 2) += c;
*(message_digest + 3) += d;
*(message_digest + 4) += e;
*(message_digest + 5) += f;
*(message_digest + 6) += g;
*(message_digest + 7) += h;
for (std::size_t i = 0; i < 8; ++i) {
*(message_digest + i) = mask_32bit(*(message_digest + i));
}
}
}
template <typename InIter>
void output_hex(InIter first, InIter last, std::ostream& os) {
os.setf(std::ios::hex, std::ios::basefield);
while (first != last) {
os.width(2);
os.fill('0');
os << static_cast<unsigned int>(*first);
++first;
}
os.setf(std::ios::dec, std::ios::basefield);
}
template <typename InIter>
void bytes_to_hex_string(InIter first, InIter last, std::string& hex_str) {
std::ostringstream oss;
output_hex(first, last, oss);
hex_str.assign(oss.str());
}
template <typename InContainer>
void bytes_to_hex_string(const InContainer& bytes, std::string& hex_str) {
bytes_to_hex_string(bytes.begin(), bytes.end(), hex_str);
}
template <typename InIter>
std::string bytes_to_hex_string(InIter first, InIter last) {
std::string hex_str;
bytes_to_hex_string(first, last, hex_str);
return hex_str;
}
template <typename InContainer>
std::string bytes_to_hex_string(const InContainer& bytes) {
std::string hex_str;
bytes_to_hex_string(bytes, hex_str);
return hex_str;
}
class hash256_one_by_one {
public:
hash256_one_by_one() { init(); }
void init() {
buffer_.clear();
std::fill(data_length_digits_, data_length_digits_ + 4, 0);
std::copy(detail::initial_message_digest,
detail::initial_message_digest + 8, h_);
}
template <typename RaIter>
void process(RaIter first, RaIter last) {
add_to_data_length(std::distance(first, last));
std::copy(first, last, std::back_inserter(buffer_));
std::size_t i = 0;
for (; i + 64 <= buffer_.size(); i += 64) {
detail::hash256_block(h_, buffer_.begin() + i,
buffer_.begin() + i + 64);
}
buffer_.erase(buffer_.begin(), buffer_.begin() + i);
}
void finish() {
uchar temp[64];
std::fill(temp, temp + 64, 0);
std::size_t remains = buffer_.size();
std::copy(buffer_.begin(), buffer_.end(), temp);
temp[remains] = 0x80;
if (remains > 55) {
std::fill(temp + remains + 1, temp + 64, 0);
detail::hash256_block(h_, temp, temp + 64);
std::fill(temp, temp + 64 - 4, 0);
}
else {
std::fill(temp + remains + 1, temp + 64 - 4, 0);
}
write_data_bit_length(&(temp[56]));
detail::hash256_block(h_, temp, temp + 64);
}
template <typename OutIter>
void get_hash_bytes(OutIter first, OutIter last) const {
for (const ulong* iter = h_; iter != h_ + 8; ++iter) {
for (std::size_t i = 0; i < 4 && first != last; ++i) {
*(first++) = detail::mask_8bit(
static_cast<uchar>((*iter >> (24 - 8 * i))));
}
}
}
private:
void add_to_data_length(ulong n) {
ulong carry = 0;
data_length_digits_[0] += n;
for (std::size_t i = 0; i < 4; ++i) {
data_length_digits_[i] += carry;
if (data_length_digits_[i] >= 65536u) {
carry = data_length_digits_[i] >> 16;
data_length_digits_[i] &= 65535u;
}
else {
break;
}
}
}
void write_data_bit_length(uchar* begin) {
ulong data_bit_length_digits[4];
std::copy(data_length_digits_, data_length_digits_ + 4,
data_bit_length_digits);
ulong carry = 0;
for (std::size_t i = 0; i < 4; ++i) {
ulong before_val = data_bit_length_digits[i];
data_bit_length_digits[i] <<= 3;
data_bit_length_digits[i] |= carry;
data_bit_length_digits[i] &= 65535u;
carry = (before_val >> (16 - 3)) & 65535u;
}
for (int i = 3; i >= 0; --i) {
(*begin++) = static_cast<uchar>(data_bit_length_digits[i] >> 8);
(*begin++) = static_cast<uchar>(data_bit_length_digits[i]);
}
}
std::vector<uchar> buffer_;
ulong data_length_digits_[4];
ulong h_[8];
};
inline void get_hash_hex_string(const hash256_one_by_one& hasher,
std::string& hex_str) {
uchar hash[k_digest_size];
hasher.get_hash_bytes(hash, hash + k_digest_size);
return bytes_to_hex_string(hash, hash + k_digest_size, hex_str);
}
inline std::string get_hash_hex_string(const hash256_one_by_one& hasher) {
std::string hex_str;
get_hash_hex_string(hasher, hex_str);
return hex_str;
}
namespace impl {
template <typename RaIter, typename OutIter>
void hash256_impl(RaIter first, RaIter last, OutIter first2, OutIter last2, int,
std::random_access_iterator_tag) {
hash256_one_by_one hasher;
hasher.process(first, last);
hasher.finish();
hasher.get_hash_bytes(first2, last2);
}
template <typename InputIter, typename OutIter>
void hash256_impl(InputIter first, InputIter last, OutIter first2,
OutIter last2, int buffer_size, std::input_iterator_tag) {
std::vector<uchar> buffer(buffer_size);
hash256_one_by_one hasher;
while (first != last) {
int size = buffer_size;
for (int i = 0; i != buffer_size; ++i, ++first) {
if (first == last) {
size = i;
break;
}
buffer[i] = *first;
}
hasher.process(buffer.begin(), buffer.begin() + size);
}
hasher.finish();
hasher.get_hash_bytes(first2, last2);
}
}
template <typename InIter, typename OutIter>
void hash256(InIter first, InIter last, OutIter first2, OutIter last2,
int buffer_size = PICOSHA2_BUFFER_SIZE_FOR_INPUT_ITERATOR) {
sha2::impl::hash256_impl(
first, last, first2, last2, buffer_size,
typename std::iterator_traits<InIter>::iterator_category());
}
template <typename InIter, typename OutContainer>
void hash256(InIter first, InIter last, OutContainer& dst) {
hash256(first, last, dst.begin(), dst.end());
}
template <typename InContainer, typename OutIter>
void hash256(const InContainer& src, OutIter first, OutIter last) {
hash256(src.begin(), src.end(), first, last);
}
template <typename InContainer, typename OutContainer>
void hash256(const InContainer& src, OutContainer& dst) {
hash256(src.begin(), src.end(), dst.begin(), dst.end());
}
template <typename InIter>
void hash256_hex_string(InIter first, InIter last, std::string& hex_str) {
uchar hashed[k_digest_size];
hash256(first, last, hashed, hashed + k_digest_size);
std::ostringstream oss;
output_hex(hashed, hashed + k_digest_size, oss);
hex_str.assign(oss.str());
}
template <typename InIter>
std::string hash256_hex_string(InIter first, InIter last) {
std::string hex_str;
hash256_hex_string(first, last, hex_str);
return hex_str;
}
inline void hash256_hex_string(const std::string& src, std::string& hex_str) {
hash256_hex_string(src.begin(), src.end(), hex_str);
}
template <typename InContainer>
void hash256_hex_string(const InContainer& src, std::string& hex_str) {
hash256_hex_string(src.begin(), src.end(), hex_str);
}
template <typename InContainer>
std::string hash256_hex_string(const InContainer& src) {
return hash256_hex_string(src.begin(), src.end());
}
}
#endif
3.<tree.h>
#pragma once
#include "node.h"
#include <iostream>
#include "sha256.h"
using namespace std;
class tree
{
private:
string merkleRoot;
int makeBinary(vector<node*>& node_vector);
void printTreeLevel(vector<node*> v);
vector<vector<node*>> base;
public:
tree();
void buildTree();
void buildBaseLeafes(vector<string> base_leafs);
int verify(string hash);
virtual ~tree();
};
tree::tree() {}
int tree::makeBinary(vector<node*>& node_vector)
{
int vectSize = node_vector.size();
if ((vectSize % 2) != 0)
{
node_vector.push_back(node_vector.end()[-1]);
vectSize++;
}
return vectSize;
}
void tree::printTreeLevel(vector<node*> v)
{
for (node* el : v)
{
cout << el->getHash() << endl;
}
cout << endl;
}
void tree::buildTree()
{
do
{
vector<node*> new_nodes;
makeBinary(base.end()[-1]);
for (int i = 0; i < base.end()[-1].size(); i += 2)
{
node* new_parent = new node;
base.end()[-1][i]->setParent(new_parent);
base.end()[-1][i + 1]->setParent(new_parent);
new_parent->setHash(base.end()[-1][i]->getHash() + base.end()[-1][i + 1]->getHash());
new_parent->setChildren(base.end()[-1][i], base.end()[-1][i + 1]);
new_nodes.push_back(new_parent);
cout << "将 " << base.end()[-1][i]->getHash() << " 和 " << base.end()[-1][i + 1]->getHash() << " 连接,得到对应父节点的哈希值 " << endl;
}
cout << endl;
cout << "得到的对应父节点的哈希值:" << endl;
printTreeLevel(new_nodes);
base.push_back(new_nodes);
cout << "该层的结点有 " << base.end()[-1].size() << " 个:" << endl;
} while (base.end()[-1].size() > 1);
merkleRoot = base.end()[-1][0]->getHash();
cout << "Merkle Root : " << merkleRoot << endl << endl;
}
void tree::buildBaseLeafes(vector<string> base_leafs)
{
vector<node*> new_nodes;
cout << "叶子结点及对应的哈希值: " << endl;
for (auto leaf : base_leafs)
{
node* new_node = new node;
new_node->setHash(leaf);
cout << leaf << ":" << new_node->getHash() << endl;
new_nodes.push_back(new_node);
}
base.push_back(new_nodes);
cout << endl;
}
int tree::verify(string hash)
{
node* el_node = nullptr;
string act_hash = hash;
for (int i = 0; i < base[0].size(); i++)
{
if (base[0][i]->getHash() == hash)
{
el_node = base[0][i];
}
}
if (el_node == nullptr)
{
return 0;
}
cout << "使用到的哈希值:" << endl;
cout << act_hash << endl;
do
{
if (el_node->checkDir() == 0)
{
act_hash = sha2::hash256_hex_string(act_hash + el_node->getSibling()->getHash());
}
else
{
act_hash = sha2::hash256_hex_string(el_node->getSibling()->getHash() + act_hash);
}
std::cout << act_hash << endl;
el_node = el_node->getParent();
} while ((el_node->getParent()) != NULL);
return act_hash == merkleRoot ? 1 : 0;
}
tree::~tree() {}
4.主函数main.cpp
#include <iostream>
#include "tree.h"
#include "sha256.h"
using namespace std;
int main()
{
string check_str = "";
cout << "输入 Merkle Tree的叶子结点的数据,以‘;’作为结束符: " << endl;
vector<string> v;
while (1)
{
string str;
cin >> str;
if (str != ";")
{
v.push_back(str);
}
else
{
break;
}
}
tree ntree;
ntree.buildBaseLeafes(v);
cout << "构建Merkle树过程:" << endl << endl;
ntree.buildTree();
cout << endl;
cout << "想验证的数据: " << endl;
cin >> check_str;
check_str = sha2::hash256_hex_string(check_str);
cout << "想验证的数据的哈希值: " << check_str << endl;
if (ntree.verify(check_str))
{
cout << endl << endl;
cout << "Merkle树上存在验证的数据的叶子结点" << endl;
}
else
{
cout << "Merkle树上不存在验证的数据" << endl;
}
return 0;
}
写在最后
以上为使用C++构建Merkle Tree的相关代码,仅供学习参考,如有相关专业问题请在评论区留言。
|