实验4-1-12 黑洞数 (20 分)
黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。
任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得的495即为三位黑洞数。所谓“重排求差”操作即组成该数的数字重排后的最大数减去重排后的最小数。(6174为四位黑洞数。)
例如,对三位数207:
- 第1次重排求差得:720 - 27 = 693;
- 第2次重排求差得:963 - 369 = 594;
- 第3次重排求差得:954 - 459 = 495;
以后会停留在495这一黑洞数。如果三位数的3个数字全相同,一次转换后即为0。
任意输入一个三位数,编程给出重排求差的过程。
输入格式:
输入在一行中给出一个三位数。
输出格式:
按照以下格式输出重排求差的过程:
序号: 数字重排后的最大数 - 重排后的最小数 = 差值
序号从1开始,直到495出现在等号右边为止。
#include<stdio.h>
int main(){
int n,a,b,c,k=1,t,max,min,count=0;
scanf("%d",&n);
while(k!=495){
a=n%10;
b=n/100;
c=n%100/10;
if(a>b){
t=a;a=b;b=t;
}
if(a>c){
t=a;a=c;c=t;
}
if(b>c){
t=b;b=c;c=t;
}
min=a*100+b*10+c;
max=c*100+b*10+a;
k=max-min;
count++;
printf("%d: %d - %d = %d\n",count,max,min,k);
n=k;
}
}
|