IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> C++知识库 -> SLAM - 视觉里程计 - 直接稀疏、半稠密法 -> 正文阅读

[C++知识库]SLAM - 视觉里程计 - 直接稀疏、半稠密法

?direct_sparse.cpp

#include <iostream>
#include <fstream>
#include <list>
#include <vector>
#include <chrono>
#include <ctime>
#include <climits>//一些类型的最值库

#include <opencv4/opencv2/core/core.hpp>
#include <opencv4/opencv2/imgproc/imgproc.hpp>
#include <opencv4/opencv2/highgui/highgui.hpp>
#include <opencv4/opencv2/features2d/features2d.hpp>

#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <g2o/core/robust_kernel.h>
#include <g2o/types/sba/types_six_dof_expmap.h>

using namespace std;
using namespace g2o;

/********************************************
 * 本节演示了RGBD上的稀疏直接法 
 ********************************************/

// 一次测量的值,包括一个世界坐标系下三维点与一个灰度值
//定义一个类结构体,用来存储每次测量得到的 世界坐标 和 灰度
struct Measurement
{
    //构造函数:参数为 三维向量pos_world和灰度值grayscale
    Measurement ( Eigen::Vector3d p, float g ) : pos_world ( p ), grayscale ( g ) {}
    Eigen::Vector3d pos_world;
    float grayscale;
};
//此处结构体可以写为class类

//2D转换为3D坐标,返回的是一个三维坐标,像素坐标-》相机坐标
//inline(编译过程)类似于#define(宏定义),称为内联函数,主要用来修饰函数,表示该函数在被调用时,直接将函数代码插入到调用处,因此节省了内存跳转的花销,提高了程序的效率
inline Eigen::Vector3d project2Dto3D ( int x, int y, int d, float fx, float fy, float cx, float cy, float scale )
{
    float zz = float ( d ) /scale;
    float xx = zz* ( x-cx ) /fx;
    float yy = zz* ( y-cy ) /fy;
    return Eigen::Vector3d ( xx, yy, zz );
}
//3D转2D,返回二维坐标,相机坐标-》像素坐标
inline Eigen::Vector2d project3Dto2D ( float x, float y, float z, float fx, float fy, float cx, float cy )
{
    float u = fx*x/z+cx;
    float v = fy*y/z+cy;
    return Eigen::Vector2d ( u,v );
}

// 直接法估计位姿
// 输入:测量值(空间点的灰度),新的灰度图,相机内参; 输出:相机位姿
// 返回:true为成功,false失败
bool poseEstimationDirect ( const vector<Measurement>& measurements, cv::Mat* gray, Eigen::Matrix3f& intrinsics, Eigen::Isometry3d& Tcw );
//     直接法位姿估计函数             存储Measurement类对象的容器          Mat类的一个指针         3×3的矩阵                      4×4的矩阵
//                                  存储特征点的空间位置和灰度             当前帧的图像            相机内参                    结算出来的位姿

// project a 3d point into an image plane, the error is photometric error
// an unary edge with one vertex SE3Expmap (the pose of camera)
//定义g2o图优化的边,继承BaseUnaryEdge类,参数分别为:测量值的维度、类型,连接此边的顶点
class EdgeSE3ProjectDirect: public BaseUnaryEdge< 1, double, VertexSE3Expmap>
{
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW//这个宏就是运算符new的对齐版本重载

    EdgeSE3ProjectDirect() {}

    EdgeSE3ProjectDirect ( Eigen::Vector3d point, float fx, float fy, float cx, float cy, cv::Mat* image )
        : x_world_ ( point ), fx_ ( fx ), fy_ ( fy ), cx_ ( cx ), cy_ ( cy ), image_ ( image )
    {}

    virtual void computeError()//虚函数,用来计算误差
    {
        const VertexSE3Expmap* v  =static_cast<const VertexSE3Expmap*> ( _vertices[0] );
        Eigen::Vector3d x_local = v->estimate().map ( x_world_ );
        float x = x_local[0]*fx_/x_local[2] + cx_;
        float y = x_local[1]*fy_/x_local[2] + cy_;
        // check x,y is in the image
        if ( x-4<0 || ( x+4 ) >image_->cols || ( y-4 ) <0 || ( y+4 ) >image_->rows )
        {
            _error ( 0,0 ) = 0.0;
            this->setLevel ( 1 );
        }
        else
        {
            _error ( 0,0 ) = getPixelValue ( x,y ) - _measurement;
        }
    }

    // plus in manifold
    virtual void linearizeOplus( )//虚函数,用来计算雅可比矩阵
    {
        if ( level() == 1 )
        {
            _jacobianOplusXi = Eigen::Matrix<double, 1, 6>::Zero();
            return;
        }
        VertexSE3Expmap* vtx = static_cast<VertexSE3Expmap*> ( _vertices[0] );
        Eigen::Vector3d xyz_trans = vtx->estimate().map ( x_world_ );   // q in book

        double x = xyz_trans[0];
        double y = xyz_trans[1];
        double invz = 1.0/xyz_trans[2];
        double invz_2 = invz*invz;

        float u = x*fx_*invz + cx_;
        float v = y*fy_*invz + cy_;

        // jacobian from se3 to u,v
        // NOTE that in g2o the Lie algebra is (\omega, \epsilon), where \omega is so(3) and \epsilon the translation
        Eigen::Matrix<double, 2, 6> jacobian_uv_ksai;

        jacobian_uv_ksai ( 0,0 ) = - x*y*invz_2 *fx_;
        jacobian_uv_ksai ( 0,1 ) = ( 1+ ( x*x*invz_2 ) ) *fx_;
        jacobian_uv_ksai ( 0,2 ) = - y*invz *fx_;
        jacobian_uv_ksai ( 0,3 ) = invz *fx_;
        jacobian_uv_ksai ( 0,4 ) = 0;
        jacobian_uv_ksai ( 0,5 ) = -x*invz_2 *fx_;

        jacobian_uv_ksai ( 1,0 ) = - ( 1+y*y*invz_2 ) *fy_;
        jacobian_uv_ksai ( 1,1 ) = x*y*invz_2 *fy_;
        jacobian_uv_ksai ( 1,2 ) = x*invz *fy_;
        jacobian_uv_ksai ( 1,3 ) = 0;
        jacobian_uv_ksai ( 1,4 ) = invz *fy_;
        jacobian_uv_ksai ( 1,5 ) = -y*invz_2 *fy_;

        Eigen::Matrix<double, 1, 2> jacobian_pixel_uv;

        jacobian_pixel_uv ( 0,0 ) = ( getPixelValue ( u+1,v )-getPixelValue ( u-1,v ) ) /2;
        jacobian_pixel_uv ( 0,1 ) = ( getPixelValue ( u,v+1 )-getPixelValue ( u,v-1 ) ) /2;

        _jacobianOplusXi = jacobian_pixel_uv*jacobian_uv_ksai;
    }

    // dummy read and write functions because we don't care...
    virtual bool read ( std::istream& in ) {}
    virtual bool write ( std::ostream& out ) const {}

protected:
    // get a gray scale value from reference image (bilinear interpolated)
    inline float getPixelValue ( float x, float y )
    {
        uchar* data = & image_->data[ int ( y ) * image_->step + int ( x ) ];
        float xx = x - floor ( x );
        float yy = y - floor ( y );
        return float (
                   ( 1-xx ) * ( 1-yy ) * data[0] +
                   xx* ( 1-yy ) * data[1] +
                   ( 1-xx ) *yy*data[ image_->step ] +
                   xx*yy*data[image_->step+1]
               );
    }
public:
    Eigen::Vector3d x_world_;   // 3D point in world frame
    float cx_=0, cy_=0, fx_=0, fy_=0; // Camera intrinsics
    cv::Mat* image_=nullptr;    // reference image
};

int main ( int argc, char** argv )
{
    if ( argc != 2 )
    {
        cout<<"usage: useLK path_to_dataset"<<endl;
        return 1;
    }
    srand ( ( unsigned int ) time ( 0 ) );//利用时间生成随机数种子
    string path_to_dataset = argv[1];
    string associate_file = path_to_dataset + "/associate.txt";

    ifstream fin ( associate_file );

    string rgb_file, depth_file, time_rgb, time_depth;
    cv::Mat color, depth, gray;
    vector<Measurement> measurements;
    // 相机内参
    float cx = 325.5;
    float cy = 253.5;
    float fx = 518.0;
    float fy = 519.0;
    float depth_scale = 1000.0;
    Eigen::Matrix3f K;
    K<<fx,0.f,cx,0.f,fy,cy,0.f,0.f,1.0f;

    Eigen::Isometry3d Tcw = Eigen::Isometry3d::Identity();

    cv::Mat prev_color;
    // 我们以第一个图像为参考,对后续图像和参考图像做直接法
    for ( int index=0; index<10; index++ )
    {
        cout<<"*********** loop "<<index<<" ************"<<endl;
        fin>>time_rgb>>rgb_file>>time_depth>>depth_file;
        color = cv::imread ( path_to_dataset+"/"+rgb_file );
        depth = cv::imread ( path_to_dataset+"/"+depth_file, -1 );
        if ( color.data==nullptr || depth.data==nullptr )
            continue; 
        //调用cvtColor图像颜色空间转换函数将RGB图像color转换为灰度图的gray,之后直接法求取位姿中使用灰度图输入每一帧
        cv::cvtColor ( color, gray, cv::COLOR_BGR2GRAY );
        if ( index ==0 )
        {
            // 对第一帧提取FAST特征点
            vector<cv::KeyPoint> keypoints;
            cv::Ptr<cv::FastFeatureDetector> detector = cv::FastFeatureDetector::create();
            detector->detect ( color, keypoints );
            for ( auto kp:keypoints )
            {
                // 去掉邻近边缘处的点
                if ( kp.pt.x < 20 || kp.pt.y < 20 || ( kp.pt.x+20 ) >color.cols || ( kp.pt.y+20 ) >color.rows )
                //首帧特征点的像素坐标是否在图像边缘20像素的范围内?
                    continue;
                ushort d = depth.ptr<ushort> ( cvRound ( kp.pt.y ) ) [ cvRound ( kp.pt.x ) ];
                if ( d==0 )//特征点所查询的深度值是否为0?
                    continue;
                Eigen::Vector3d p3d = project2Dto3D ( kp.pt.x, kp.pt.y, d, fx, fy, cx, cy, depth_scale );//计算三维坐标
                float grayscale = float ( gray.ptr<uchar> ( cvRound ( kp.pt.y ) ) [ cvRound ( kp.pt.x ) ] );//获取深度信息
                measurements.push_back ( Measurement ( p3d, grayscale ) );//存入measurements容器对象
            }
            prev_color = color.clone();
            continue;
        }
        // 使用直接法计算相机运动
        chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
        //使用计算好的特征点深度信息与灰度值信息,调用poseEstimationDirect函数进行直接法的位姿求取
        poseEstimationDirect ( measurements, &gray, K, Tcw );
        chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
        chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>> ( t2-t1 );
        cout<<"direct method costs time: "<<time_used.count() <<" seconds."<<endl;
        //取得到相机位姿变换矩阵Tcw后将其进行输出展示,
        cout<<"Tcw="<<Tcw.matrix() <<endl;

        //利用其进行计算特征点在当前帧中的位置,最后进行圈画并以图片的形式进行展示
        // plot the feature points
        cv::Mat img_show ( color.rows*2, color.cols, CV_8UC3 );
        prev_color.copyTo ( img_show ( cv::Rect ( 0,0,color.cols, color.rows ) ) );
        color.copyTo ( img_show ( cv::Rect ( 0,color.rows,color.cols, color.rows ) ) );
        //将每一帧图像与第一帧进行拼接,并将两帧图像中的特征点进行圈画及连线
        for ( Measurement m:measurements )
        {
            if ( rand() > RAND_MAX/5 )//为了适当减少所圈画的特征点的个数,即只取五分之一的特征点进行展示
                continue;
            Eigen::Vector3d p = m.pos_world;
            Eigen::Vector2d pixel_prev = project3Dto2D ( p ( 0,0 ), p ( 1,0 ), p ( 2,0 ), fx, fy, cx, cy );
            Eigen::Vector3d p2 = Tcw*m.pos_world;
            Eigen::Vector2d pixel_now = project3Dto2D ( p2 ( 0,0 ), p2 ( 1,0 ), p2 ( 2,0 ), fx, fy, cx, cy );
            if ( pixel_now(0,0)<0 || pixel_now(0,0)>=color.cols || pixel_now(1,0)<0 || pixel_now(1,0)>=color.rows )
                continue;

            float b = 255*float ( rand() ) /RAND_MAX;
            float g = 255*float ( rand() ) /RAND_MAX;
            float r = 255*float ( rand() ) /RAND_MAX;
            cv::circle ( img_show, cv::Point2d ( pixel_prev ( 0,0 ), pixel_prev ( 1,0 ) ), 8, cv::Scalar ( b,g,r ), 2 );
            cv::circle ( img_show, cv::Point2d ( pixel_now ( 0,0 ), pixel_now ( 1,0 ) +color.rows ), 8, cv::Scalar ( b,g,r ), 2 );
            cv::line ( img_show, cv::Point2d ( pixel_prev ( 0,0 ), pixel_prev ( 1,0 ) ), cv::Point2d ( pixel_now ( 0,0 ), pixel_now ( 1,0 ) +color.rows ), cv::Scalar ( b,g,r ), 1 );
        }
        cv::imshow ( "result", img_show );
        cv::waitKey ( 0 );

    }
    return 0;
}

bool poseEstimationDirect(const vector< Measurement >& measurements, cv::Mat* gray, Eigen::Matrix3f& K, Eigen::Isometry3d& Tcw)
{
    //     // 初始化g2o
    // 
    //     //Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>(); // 线性方程求解器
    //     std::unique_ptr<Block::LinearSolverType> linearSolver ( new g2o::LinearSolverCSparse<Block::PoseMatrixType>());
    // 
    //     //Block* solver_ptr = new Block ( linearSolver );
    //     //std::unique_ptr<Block> solver_ptr ( new Block ( linearSolver));
    //     std::unique_ptr<Block> solver_ptr ( new Block ( std::move(linearSolver)));     // 矩阵块求解器
    // 
    //     //g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr);
    //     g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( std::move(solver_ptr));
    // 
    //     g2o::SparseOptimizer optimizer;
    // 
    //     optimizer.setAlgorithm ( solver );
    
    
    // 初始化g2o
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 1>> DirectBlock;  // 求解的向量是6*1的

    std::unique_ptr<DirectBlock::LinearSolverType> linearSolver(new LinearSolver <DirectBlock::PoseMatrixType>());

    std::unique_ptr<DirectBlock> solver_ptr(new DirectBlock(unique_ptr<DirectBlock::LinearSolverType>(linearSolver)));

    //g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( unique_ptr<DirectBlock>(solver_ptr) ); // G-N
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(std::move(solver_ptr)); // L-M
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm(solver);
    optimizer.setVerbose(true);
    ///home/kyle/projects/directMethod/direct_sparse.cpp:273:116: error: expected primary-expression before ‘>’ token
    ///home/kyle/projects/directMethod/direct_sparse.cpp:273:113: error: invalid new-expression of abstract class type ‘g2o::LinearSolver<Eigen::Matrix<double, 6, 6, 0> >’

    g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap();
    pose->setEstimate(g2o::SE3Quat(Tcw.rotation(), Tcw.translation()));
    pose->setId(0);
    optimizer.addVertex(pose);
    // 添加边
    int id = 1;
    for (Measurement m : measurements)
    {
        EdgeSE3ProjectDirect* edge = new EdgeSE3ProjectDirect(
            m.pos_world,
            K(0, 0), K(1, 1), K(0, 2), K(1, 2), gray
        );
        edge->setVertex(0, pose);
        edge->setMeasurement(m.grayscale);
        edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity());
        edge->setId(id++);
        optimizer.addEdge(edge);
    }
    cout << "edges in graph: " << optimizer.edges().size() << endl;
    optimizer.initializeOptimization();
    optimizer.optimize(30);
    Tcw = pose->estimate();
}

CMakeLists.txt?

cmake_minimum_required( VERSION 2.8 )
project( directMethod )

set( CMAKE_BUILD_TYPE Release )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )

# 添加cmake模块路径
list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules )

find_package( OpenCV )
include_directories( ${OpenCV_INCLUDE_DIRS} )

find_package( G2O )
include_directories( ${G2O_INCLUDE_DIRS} ) 

include_directories( "/usr/include/eigen3" )

set( G2O_LIBS 
    g2o_core g2o_types_sba g2o_solver_csparse g2o_stuff g2o_csparse_extension 
)

add_executable( direct_sparse direct_sparse.cpp )
target_link_libraries( direct_sparse ${OpenCV_LIBS} ${G2O_LIBS} )

add_executable( direct_semidense direct_semidense.cpp )
target_link_libraries( direct_semidense ${OpenCV_LIBS} ${G2O_LIBS} )

半稠密法在稀疏法的基础上进行 main 函数的改动:

direct_semidense.cpp

// select the pixels with high gradiants 
            //双层遍历循环像素点,上下左右10像素以内的边缘不考虑
            for ( int x=10; x<gray.cols-10; x++ )
                for ( int y=10; y<gray.rows-10; y++ )
                {
//delta为梯度向量,x方向梯度值为 x+1 灰度值 减 x-1 灰度值,y方向梯度值为 y+1 灰度值 减 y-1 灰度值,所以(x,y)处的像素梯度与上下左右的像素灰度有关
                    Eigen::Vector2d delta (
                        gray.ptr<uchar>(y)[x+1] - gray.ptr<uchar>(y)[x-1], 
                        gray.ptr<uchar>(y+1)[x] - gray.ptr<uchar>(y-1)[x]
                    );
//如果模长小于50,即任务就是梯度不明显,continue,其他的就开始对应深度和空间点,push_back到measurements
//跟稀疏比在第一帧中多取了一些像素点。稠密将所有点全push进measurements
                    if ( delta.norm() < 50 )
                        continue;
                    ushort d = depth.ptr<ushort> (y)[x];
                    if ( d==0 )
                        continue;
                    Eigen::Vector3d p3d = project2Dto3D ( x, y, d, fx, fy, cx, cy, depth_scale );
                    float grayscale = float ( gray.ptr<uchar> (y) [x] );
                    measurements.push_back ( Measurement ( p3d, grayscale ) );
                }

  C++知识库 最新文章
【C++】友元、嵌套类、异常、RTTI、类型转换
通讯录的思路与实现(C语言)
C++PrimerPlus 第七章 函数-C++的编程模块(
Problem C: 算法9-9~9-12:平衡二叉树的基本
MSVC C++ UTF-8编程
C++进阶 多态原理
简单string类c++实现
我的年度总结
【C语言】以深厚地基筑伟岸高楼-基础篇(六
c语言常见错误合集
上一篇文章      下一篇文章      查看所有文章
加:2022-05-11 16:14:51  更:2022-05-11 16:16:17 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 2:37:41-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码