?direct_sparse.cpp
#include <iostream>
#include <fstream>
#include <list>
#include <vector>
#include <chrono>
#include <ctime>
#include <climits>//一些类型的最值库
#include <opencv4/opencv2/core/core.hpp>
#include <opencv4/opencv2/imgproc/imgproc.hpp>
#include <opencv4/opencv2/highgui/highgui.hpp>
#include <opencv4/opencv2/features2d/features2d.hpp>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <g2o/core/robust_kernel.h>
#include <g2o/types/sba/types_six_dof_expmap.h>
using namespace std;
using namespace g2o;
/********************************************
* 本节演示了RGBD上的稀疏直接法
********************************************/
// 一次测量的值,包括一个世界坐标系下三维点与一个灰度值
//定义一个类结构体,用来存储每次测量得到的 世界坐标 和 灰度
struct Measurement
{
//构造函数:参数为 三维向量pos_world和灰度值grayscale
Measurement ( Eigen::Vector3d p, float g ) : pos_world ( p ), grayscale ( g ) {}
Eigen::Vector3d pos_world;
float grayscale;
};
//此处结构体可以写为class类
//2D转换为3D坐标,返回的是一个三维坐标,像素坐标-》相机坐标
//inline(编译过程)类似于#define(宏定义),称为内联函数,主要用来修饰函数,表示该函数在被调用时,直接将函数代码插入到调用处,因此节省了内存跳转的花销,提高了程序的效率
inline Eigen::Vector3d project2Dto3D ( int x, int y, int d, float fx, float fy, float cx, float cy, float scale )
{
float zz = float ( d ) /scale;
float xx = zz* ( x-cx ) /fx;
float yy = zz* ( y-cy ) /fy;
return Eigen::Vector3d ( xx, yy, zz );
}
//3D转2D,返回二维坐标,相机坐标-》像素坐标
inline Eigen::Vector2d project3Dto2D ( float x, float y, float z, float fx, float fy, float cx, float cy )
{
float u = fx*x/z+cx;
float v = fy*y/z+cy;
return Eigen::Vector2d ( u,v );
}
// 直接法估计位姿
// 输入:测量值(空间点的灰度),新的灰度图,相机内参; 输出:相机位姿
// 返回:true为成功,false失败
bool poseEstimationDirect ( const vector<Measurement>& measurements, cv::Mat* gray, Eigen::Matrix3f& intrinsics, Eigen::Isometry3d& Tcw );
// 直接法位姿估计函数 存储Measurement类对象的容器 Mat类的一个指针 3×3的矩阵 4×4的矩阵
// 存储特征点的空间位置和灰度 当前帧的图像 相机内参 结算出来的位姿
// project a 3d point into an image plane, the error is photometric error
// an unary edge with one vertex SE3Expmap (the pose of camera)
//定义g2o图优化的边,继承BaseUnaryEdge类,参数分别为:测量值的维度、类型,连接此边的顶点
class EdgeSE3ProjectDirect: public BaseUnaryEdge< 1, double, VertexSE3Expmap>
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW//这个宏就是运算符new的对齐版本重载
EdgeSE3ProjectDirect() {}
EdgeSE3ProjectDirect ( Eigen::Vector3d point, float fx, float fy, float cx, float cy, cv::Mat* image )
: x_world_ ( point ), fx_ ( fx ), fy_ ( fy ), cx_ ( cx ), cy_ ( cy ), image_ ( image )
{}
virtual void computeError()//虚函数,用来计算误差
{
const VertexSE3Expmap* v =static_cast<const VertexSE3Expmap*> ( _vertices[0] );
Eigen::Vector3d x_local = v->estimate().map ( x_world_ );
float x = x_local[0]*fx_/x_local[2] + cx_;
float y = x_local[1]*fy_/x_local[2] + cy_;
// check x,y is in the image
if ( x-4<0 || ( x+4 ) >image_->cols || ( y-4 ) <0 || ( y+4 ) >image_->rows )
{
_error ( 0,0 ) = 0.0;
this->setLevel ( 1 );
}
else
{
_error ( 0,0 ) = getPixelValue ( x,y ) - _measurement;
}
}
// plus in manifold
virtual void linearizeOplus( )//虚函数,用来计算雅可比矩阵
{
if ( level() == 1 )
{
_jacobianOplusXi = Eigen::Matrix<double, 1, 6>::Zero();
return;
}
VertexSE3Expmap* vtx = static_cast<VertexSE3Expmap*> ( _vertices[0] );
Eigen::Vector3d xyz_trans = vtx->estimate().map ( x_world_ ); // q in book
double x = xyz_trans[0];
double y = xyz_trans[1];
double invz = 1.0/xyz_trans[2];
double invz_2 = invz*invz;
float u = x*fx_*invz + cx_;
float v = y*fy_*invz + cy_;
// jacobian from se3 to u,v
// NOTE that in g2o the Lie algebra is (\omega, \epsilon), where \omega is so(3) and \epsilon the translation
Eigen::Matrix<double, 2, 6> jacobian_uv_ksai;
jacobian_uv_ksai ( 0,0 ) = - x*y*invz_2 *fx_;
jacobian_uv_ksai ( 0,1 ) = ( 1+ ( x*x*invz_2 ) ) *fx_;
jacobian_uv_ksai ( 0,2 ) = - y*invz *fx_;
jacobian_uv_ksai ( 0,3 ) = invz *fx_;
jacobian_uv_ksai ( 0,4 ) = 0;
jacobian_uv_ksai ( 0,5 ) = -x*invz_2 *fx_;
jacobian_uv_ksai ( 1,0 ) = - ( 1+y*y*invz_2 ) *fy_;
jacobian_uv_ksai ( 1,1 ) = x*y*invz_2 *fy_;
jacobian_uv_ksai ( 1,2 ) = x*invz *fy_;
jacobian_uv_ksai ( 1,3 ) = 0;
jacobian_uv_ksai ( 1,4 ) = invz *fy_;
jacobian_uv_ksai ( 1,5 ) = -y*invz_2 *fy_;
Eigen::Matrix<double, 1, 2> jacobian_pixel_uv;
jacobian_pixel_uv ( 0,0 ) = ( getPixelValue ( u+1,v )-getPixelValue ( u-1,v ) ) /2;
jacobian_pixel_uv ( 0,1 ) = ( getPixelValue ( u,v+1 )-getPixelValue ( u,v-1 ) ) /2;
_jacobianOplusXi = jacobian_pixel_uv*jacobian_uv_ksai;
}
// dummy read and write functions because we don't care...
virtual bool read ( std::istream& in ) {}
virtual bool write ( std::ostream& out ) const {}
protected:
// get a gray scale value from reference image (bilinear interpolated)
inline float getPixelValue ( float x, float y )
{
uchar* data = & image_->data[ int ( y ) * image_->step + int ( x ) ];
float xx = x - floor ( x );
float yy = y - floor ( y );
return float (
( 1-xx ) * ( 1-yy ) * data[0] +
xx* ( 1-yy ) * data[1] +
( 1-xx ) *yy*data[ image_->step ] +
xx*yy*data[image_->step+1]
);
}
public:
Eigen::Vector3d x_world_; // 3D point in world frame
float cx_=0, cy_=0, fx_=0, fy_=0; // Camera intrinsics
cv::Mat* image_=nullptr; // reference image
};
int main ( int argc, char** argv )
{
if ( argc != 2 )
{
cout<<"usage: useLK path_to_dataset"<<endl;
return 1;
}
srand ( ( unsigned int ) time ( 0 ) );//利用时间生成随机数种子
string path_to_dataset = argv[1];
string associate_file = path_to_dataset + "/associate.txt";
ifstream fin ( associate_file );
string rgb_file, depth_file, time_rgb, time_depth;
cv::Mat color, depth, gray;
vector<Measurement> measurements;
// 相机内参
float cx = 325.5;
float cy = 253.5;
float fx = 518.0;
float fy = 519.0;
float depth_scale = 1000.0;
Eigen::Matrix3f K;
K<<fx,0.f,cx,0.f,fy,cy,0.f,0.f,1.0f;
Eigen::Isometry3d Tcw = Eigen::Isometry3d::Identity();
cv::Mat prev_color;
// 我们以第一个图像为参考,对后续图像和参考图像做直接法
for ( int index=0; index<10; index++ )
{
cout<<"*********** loop "<<index<<" ************"<<endl;
fin>>time_rgb>>rgb_file>>time_depth>>depth_file;
color = cv::imread ( path_to_dataset+"/"+rgb_file );
depth = cv::imread ( path_to_dataset+"/"+depth_file, -1 );
if ( color.data==nullptr || depth.data==nullptr )
continue;
//调用cvtColor图像颜色空间转换函数将RGB图像color转换为灰度图的gray,之后直接法求取位姿中使用灰度图输入每一帧
cv::cvtColor ( color, gray, cv::COLOR_BGR2GRAY );
if ( index ==0 )
{
// 对第一帧提取FAST特征点
vector<cv::KeyPoint> keypoints;
cv::Ptr<cv::FastFeatureDetector> detector = cv::FastFeatureDetector::create();
detector->detect ( color, keypoints );
for ( auto kp:keypoints )
{
// 去掉邻近边缘处的点
if ( kp.pt.x < 20 || kp.pt.y < 20 || ( kp.pt.x+20 ) >color.cols || ( kp.pt.y+20 ) >color.rows )
//首帧特征点的像素坐标是否在图像边缘20像素的范围内?
continue;
ushort d = depth.ptr<ushort> ( cvRound ( kp.pt.y ) ) [ cvRound ( kp.pt.x ) ];
if ( d==0 )//特征点所查询的深度值是否为0?
continue;
Eigen::Vector3d p3d = project2Dto3D ( kp.pt.x, kp.pt.y, d, fx, fy, cx, cy, depth_scale );//计算三维坐标
float grayscale = float ( gray.ptr<uchar> ( cvRound ( kp.pt.y ) ) [ cvRound ( kp.pt.x ) ] );//获取深度信息
measurements.push_back ( Measurement ( p3d, grayscale ) );//存入measurements容器对象
}
prev_color = color.clone();
continue;
}
// 使用直接法计算相机运动
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
//使用计算好的特征点深度信息与灰度值信息,调用poseEstimationDirect函数进行直接法的位姿求取
poseEstimationDirect ( measurements, &gray, K, Tcw );
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>> ( t2-t1 );
cout<<"direct method costs time: "<<time_used.count() <<" seconds."<<endl;
//取得到相机位姿变换矩阵Tcw后将其进行输出展示,
cout<<"Tcw="<<Tcw.matrix() <<endl;
//利用其进行计算特征点在当前帧中的位置,最后进行圈画并以图片的形式进行展示
// plot the feature points
cv::Mat img_show ( color.rows*2, color.cols, CV_8UC3 );
prev_color.copyTo ( img_show ( cv::Rect ( 0,0,color.cols, color.rows ) ) );
color.copyTo ( img_show ( cv::Rect ( 0,color.rows,color.cols, color.rows ) ) );
//将每一帧图像与第一帧进行拼接,并将两帧图像中的特征点进行圈画及连线
for ( Measurement m:measurements )
{
if ( rand() > RAND_MAX/5 )//为了适当减少所圈画的特征点的个数,即只取五分之一的特征点进行展示
continue;
Eigen::Vector3d p = m.pos_world;
Eigen::Vector2d pixel_prev = project3Dto2D ( p ( 0,0 ), p ( 1,0 ), p ( 2,0 ), fx, fy, cx, cy );
Eigen::Vector3d p2 = Tcw*m.pos_world;
Eigen::Vector2d pixel_now = project3Dto2D ( p2 ( 0,0 ), p2 ( 1,0 ), p2 ( 2,0 ), fx, fy, cx, cy );
if ( pixel_now(0,0)<0 || pixel_now(0,0)>=color.cols || pixel_now(1,0)<0 || pixel_now(1,0)>=color.rows )
continue;
float b = 255*float ( rand() ) /RAND_MAX;
float g = 255*float ( rand() ) /RAND_MAX;
float r = 255*float ( rand() ) /RAND_MAX;
cv::circle ( img_show, cv::Point2d ( pixel_prev ( 0,0 ), pixel_prev ( 1,0 ) ), 8, cv::Scalar ( b,g,r ), 2 );
cv::circle ( img_show, cv::Point2d ( pixel_now ( 0,0 ), pixel_now ( 1,0 ) +color.rows ), 8, cv::Scalar ( b,g,r ), 2 );
cv::line ( img_show, cv::Point2d ( pixel_prev ( 0,0 ), pixel_prev ( 1,0 ) ), cv::Point2d ( pixel_now ( 0,0 ), pixel_now ( 1,0 ) +color.rows ), cv::Scalar ( b,g,r ), 1 );
}
cv::imshow ( "result", img_show );
cv::waitKey ( 0 );
}
return 0;
}
bool poseEstimationDirect(const vector< Measurement >& measurements, cv::Mat* gray, Eigen::Matrix3f& K, Eigen::Isometry3d& Tcw)
{
// // 初始化g2o
//
// //Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>(); // 线性方程求解器
// std::unique_ptr<Block::LinearSolverType> linearSolver ( new g2o::LinearSolverCSparse<Block::PoseMatrixType>());
//
// //Block* solver_ptr = new Block ( linearSolver );
// //std::unique_ptr<Block> solver_ptr ( new Block ( linearSolver));
// std::unique_ptr<Block> solver_ptr ( new Block ( std::move(linearSolver))); // 矩阵块求解器
//
// //g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr);
// g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( std::move(solver_ptr));
//
// g2o::SparseOptimizer optimizer;
//
// optimizer.setAlgorithm ( solver );
// 初始化g2o
typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 1>> DirectBlock; // 求解的向量是6*1的
std::unique_ptr<DirectBlock::LinearSolverType> linearSolver(new LinearSolver <DirectBlock::PoseMatrixType>());
std::unique_ptr<DirectBlock> solver_ptr(new DirectBlock(unique_ptr<DirectBlock::LinearSolverType>(linearSolver)));
//g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( unique_ptr<DirectBlock>(solver_ptr) ); // G-N
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(std::move(solver_ptr)); // L-M
g2o::SparseOptimizer optimizer;
optimizer.setAlgorithm(solver);
optimizer.setVerbose(true);
///home/kyle/projects/directMethod/direct_sparse.cpp:273:116: error: expected primary-expression before ‘>’ token
///home/kyle/projects/directMethod/direct_sparse.cpp:273:113: error: invalid new-expression of abstract class type ‘g2o::LinearSolver<Eigen::Matrix<double, 6, 6, 0> >’
g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap();
pose->setEstimate(g2o::SE3Quat(Tcw.rotation(), Tcw.translation()));
pose->setId(0);
optimizer.addVertex(pose);
// 添加边
int id = 1;
for (Measurement m : measurements)
{
EdgeSE3ProjectDirect* edge = new EdgeSE3ProjectDirect(
m.pos_world,
K(0, 0), K(1, 1), K(0, 2), K(1, 2), gray
);
edge->setVertex(0, pose);
edge->setMeasurement(m.grayscale);
edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity());
edge->setId(id++);
optimizer.addEdge(edge);
}
cout << "edges in graph: " << optimizer.edges().size() << endl;
optimizer.initializeOptimization();
optimizer.optimize(30);
Tcw = pose->estimate();
}
CMakeLists.txt?
cmake_minimum_required( VERSION 2.8 )
project( directMethod )
set( CMAKE_BUILD_TYPE Release )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )
# 添加cmake模块路径
list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules )
find_package( OpenCV )
include_directories( ${OpenCV_INCLUDE_DIRS} )
find_package( G2O )
include_directories( ${G2O_INCLUDE_DIRS} )
include_directories( "/usr/include/eigen3" )
set( G2O_LIBS
g2o_core g2o_types_sba g2o_solver_csparse g2o_stuff g2o_csparse_extension
)
add_executable( direct_sparse direct_sparse.cpp )
target_link_libraries( direct_sparse ${OpenCV_LIBS} ${G2O_LIBS} )
add_executable( direct_semidense direct_semidense.cpp )
target_link_libraries( direct_semidense ${OpenCV_LIBS} ${G2O_LIBS} )
半稠密法在稀疏法的基础上进行 main 函数的改动:
direct_semidense.cpp
// select the pixels with high gradiants
//双层遍历循环像素点,上下左右10像素以内的边缘不考虑
for ( int x=10; x<gray.cols-10; x++ )
for ( int y=10; y<gray.rows-10; y++ )
{
//delta为梯度向量,x方向梯度值为 x+1 灰度值 减 x-1 灰度值,y方向梯度值为 y+1 灰度值 减 y-1 灰度值,所以(x,y)处的像素梯度与上下左右的像素灰度有关
Eigen::Vector2d delta (
gray.ptr<uchar>(y)[x+1] - gray.ptr<uchar>(y)[x-1],
gray.ptr<uchar>(y+1)[x] - gray.ptr<uchar>(y-1)[x]
);
//如果模长小于50,即任务就是梯度不明显,continue,其他的就开始对应深度和空间点,push_back到measurements
//跟稀疏比在第一帧中多取了一些像素点。稠密将所有点全push进measurements
if ( delta.norm() < 50 )
continue;
ushort d = depth.ptr<ushort> (y)[x];
if ( d==0 )
continue;
Eigen::Vector3d p3d = project2Dto3D ( x, y, d, fx, fy, cx, cy, depth_scale );
float grayscale = float ( gray.ptr<uchar> (y) [x] );
measurements.push_back ( Measurement ( p3d, grayscale ) );
}
|