目录
1.多态的基本概念
2.多态案例一 计算机类
3. 纯虚函数和抽象类
4 多态案例二——制作饮品
5 虚析构和纯虚析构
6 多态案例三——电脑组装
1.多态的基本概念
多态是C++面向对象三大特性之一
多态分为两类
○静态多态:函数重载 和 运算符重载属于静态多态,复用函数名
○动态多态:派生类和虚函数实现运行时多态
静态多态和动态多态区别:
○静态多态的函数地址早绑定 - 编译阶段确定函数地址
○动态多态的函数地址晚绑定 - 运行阶段确定函数地址
下面通过案例进行讲解多态
#include<iostream>
using namespace std;
//多态
//动物类
class Animal
{
public:
virtual void speak()
{
cout << "Animal is speaking" << endl;
}
};
//猫类
class Cat : public Animal
{
public:
//重写 函数返回值类型 函数名 参数列表 完全相同
void speak()
{
cout << "cat is speaking" << endl;
}
};
//狗类
class Dog : public Animal
{
public:
void speak()
{
cout << "dog is speaking" << endl;
}
};
//执行说话的函数
//地址早绑定 在编译阶段确定函数地址
//如果想执行让猫说话,那么这个函数地址就不能提前绑定,需要在运行阶段进行绑定,地址晚绑定
//动态多态满足条件
//1、有继承关系
//2、子类重写父类的虚函数
//动态多态使用
//父类的指针或者引用 执行子类对象
void doSpeak(Animal &animal) // Animal & animal = cat;
{
animal.speak();
}
void test01()
{
Cat cat;
doSpeak(cat);
Dog dog;
doSpeak(dog);
}
int main(){
test01();
system("pause");
return 0;
}
总结:
多态满足条件
○有继承关系
○子类重写父类中的虚函数
多态使用条件
○父类指针或引用指向子类对象
重写:函数返回值类型 函数名 参数列表 完全一致成为重写
2.多态案例一 计算机类
案例描述:
分别利用普通写法和多态技术,设计实现两个操作数进行运算的计算机类
多态的优点:
○代码组织结构清晰
○可读性强
○利于前期和后期的扩展以及维护
#include<iostream>
using namespace std;
#include<string>
//分别利用普通写法和多态技术实现计算器
//普通写法
class Calculator
{
public:
int getResult(string oper)
{
if (oper == "+")
{
return m_Num1 + m_Num2;
}
else if (oper == "-")
{
return m_Num1 - m_Num2;
}
else if (oper == "*")
{
return m_Num1 * m_Num2;
}
//如果想扩展新的功能,需要修改源码
//在真实开发中 提倡 开闭原则
//开闭原则:对扩展进行开发,对修改进行关闭
}
int m_Num1; //操作数1
int m_Num2; //操作数2
};
void test01()
{
//创建计算器对象
Calculator c;
c.m_Num1 = 10;
c.m_Num2 = 10;
cout << c.m_Num1 << "+" << c.m_Num2 << "=" << c.getResult("+") << endl;
cout << c.m_Num1 << "-" << c.m_Num2 << "=" << c.getResult("-") << endl;
cout << c.m_Num1 << "*" << c.m_Num2 << "=" << c.getResult("*") << endl;
}
//利用多态实现计算机
//多态好处:
//1、组织结构清晰
//2、可读性强
//3、对于前期和后期扩展以及维护性高
//实现计算器抽象类
class AbstractCalculator
{
public:
virtual int getResult()
{
return 0;
}
int m_Num1;
int m_Num2;
};
//加法计算器类
class AddCalculator : public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 + m_Num2;
}
};
//减法计算器类
class SubCalculator : public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 - m_Num2;
}
};
//加法计算器类
class MulCalculator : public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 * m_Num2;
}
};
void test02()
{
//多态使用条件
//父类指针或者引用指向子类对象
//加法
AbstractCalculator *abc = new AddCalculator;
abc->m_Num1 = 10;
abc->m_Num2 = 10;
cout << abc->m_Num1 << "+" << abc->m_Num2 << "=" << abc->getResult() << endl;
//用完后记得销毁 销毁只是销毁堆区的数据,abc本质上还是父类的指针
delete abc;
//减法运算
abc = new SubCalculator;
abc->m_Num1 = 100;
abc->m_Num2 = 10;
cout << abc->m_Num1 << "-" << abc->m_Num2 << "=" << abc->getResult() << endl;
delete abc;
//乘法运算
abc = new MulCalculator;
abc->m_Num1 = 100;
abc->m_Num2 = 10;
cout << abc->m_Num1 << "*" << abc->m_Num2 << "=" << abc->getResult() << endl;
delete abc;
}
int main(){
// test01();
test02();
system("pause");
return 0;
}
总结:C++开发提倡利用多态设计程序架构,因为多态优点很多
3. 纯虚函数和抽象类
在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容
因此可以将虚函数岗位纯虚函数
纯虚函数语法: virtual 返回值类型 函数名 (参数列表) = 0;
当类中有了纯虚函数,这个类也称为抽象类
抽象类特点:
○无法实例化对象
○子类必须重写抽象类中的纯虚函数,否则也属于抽象类
#include<iostream>
using namespace std;
//纯虚函数和抽象类
class Base
{
public:
//纯虚函数
//只要有一个纯虚函数,这个类称为抽象类
//抽象类特点:
//1、无法实例化对象
//2、抽象类的子类 必须要重写父类中的纯虚函数,否则也属于抽象类
virtual void func() = 0;
};
class Son : public Base
{
public:
virtual void func()
{
cout << "function call" << endl;
};
};
void test01()
{
//invalid new-expression of abstract class type 'Base'
// Base b; //抽象类是无法实例化对象
// new Base; //抽象类是无法实例化对象
//Son s;
Base *base = new Son;
base->func();
}
int main(){
test01();
system("pause");
return 0;
}
4 多态案例二——制作饮品
案例描述:
制作饮品的大致流程为:煮水 ——?冲泡 —— 倒入杯中 —— 加入辅料
利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶
#include<iostream>
using namespace std;
//多态案例2 制作饮品
class AbstractDrinking
{
public:
//煮水
virtual void Boil() = 0;
//冲泡
virtual void Brew() = 0;
//倒入杯中
virtual void PourInCup() = 0;
//加入辅料
virtual void PutSomething() = 0;
//制作饮料
void makerDrink()
{
Boil();
Brew();
PourInCup();
PutSomething();
}
};
//制作咖啡
class Coffee : public AbstractDrinking
{
//煮水
virtual void Boil()
{
cout << "boil water" << endl;
}
//冲泡
virtual void Brew()
{
cout << "Brew coffee" << endl;
}
//倒入杯中
virtual void PourInCup()
{
cout << "pour in cup" << endl;
}
//加入辅料
virtual void PutSomething()
{
cout << "put sugar and milk into cup" << endl;
}
};
//制作茶
class Tea : public AbstractDrinking
{
//煮水
virtual void Boil()
{
cout << "boil water" << endl;
}
//冲泡
virtual void Brew()
{
cout << "Brew tea" << endl;
}
//倒入杯中
virtual void PourInCup()
{
cout << "pour in cup" << endl;
}
//加入辅料
virtual void PutSomething()
{
cout << "put lemon into cup" << endl;
}
};
//制作函数
void doWork(AbstractDrinking * abs)//AbstractDrinking * abs = new coffee
{
abs->makerDrink();
delete abs; //release
}
void test01()
{
//make coffee
doWork(new Coffee);
cout << "-------------" << endl;
//make tea
doWork(new Tea);
}
int main(){
test01();
system("pause");
return 0;
}
5 虚析构和纯虚析构
多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码
解决方式:将父类中的析构函数改为虚析构或者纯虚析构
虚析构和纯虚析构共性:
○可以解决父类指针释放子类对象
○都需要有具体的函数实现
虚析构和纯虚析构区别:
○如果是纯虚析构,该类属于抽象类,无法实例化对象
虚析构语法:
virtual ~类名(){}
纯虚析构语法:
virtual ~类名() = 0;
类名::~类名(){}
#include<iostream>
using namespace std;
#include<string>
//虚析构和纯虚析构
class Animal
{
public:
Animal()
{
cout << "Animal construct function is called" << endl;
}
//虚析构
// virtual ~Animal()
// {
// cout << "Animal xigou function is called" << endl;
// }
//纯虚析构 需要声明也需要实现
//有了纯虚析构之后,这个类也属于抽象类,无法实例化对象
virtual ~Animal() = 0;
//纯虚函数
virtual void speak() = 0;
};
Animal:: ~Animal()
{
cout << "Animal pure virtual xigou function is called" << endl;
}
class Cat:public Animal
{
public:
Cat(string name)
{
cout << "cat construct function is called" << endl;
m_Name = new string(name);
}
virtual void speak()
{
cout << *m_Name << " cat is talking" << endl;
}
~Cat()
{
if (m_Name != NULL)
{
cout << "xigou function is called" << endl;
delete m_Name;
m_Name = NULL;
}
}
string *m_Name;
};
void test01()
{
Animal *animal = new Cat("Tom");
animal->speak();
//父类指针在析构时候 不会调用子类中析构函数,导致子类中如果有堆区属性,出现内存泄露
delete animal;
}
int main(){
test01();
system("pause");
return 0;
}
总结:
1.虚析构或纯虚析构就是用来解决父类指针释放子类对象
2.如果子类中没有堆区数据,可以不写为虚析构或纯虚析构
3.拥有纯虚析构函数的类也属于抽象类
6 多态案例三——电脑组装
案例描述:
电脑主要组成部件为CPU(用于计算),显卡(用于显示),内存条(用于存储)
将每个零件封装成抽象基类,并且提供不同的厂商生产不同的零件,例如intel和Lenovo
创建电脑类提供让电脑工作的函数,并且调用每个零件工作的接口
测试时组装三台不同的电脑进行工作。
#include<iostream>
using namespace std;
//电脑组装
//抽象不同零件类
//抽象CPU类
class CPU
{
public:
//抽象的计算函数
virtual void calculate() = 0;
};
//抽象显卡类
class VideoCard
{
public:
//抽象的显示函数
virtual void display() = 0;
};
//抽象内存条类
class Memory
{
public:
//抽象的存储函数
virtual void storage() = 0;
};
//电脑类
class Computer
{
public:
Computer(CPU *cpu,VideoCard * vc , Memory * mem)
{
m_cpu = cpu;
m_vc = vc;
m_mem = mem;
}
//提供工作的函数
void work()
{
//让零件工作起来,调用接口
m_cpu->calculate();
m_vc->display();
m_mem->storage();
}
//提供析构函数 释放3个电脑零件
~Computer()
{
//释放CPU零件
if(m_cpu != NULL)
{
delete m_cpu;
m_cpu = NULL;
}
//释放显卡零件
if(m_vc != NULL)
{
delete m_vc;
m_vc = NULL;
}
//释放内存条零件
if(m_mem != NULL)
{
delete m_mem;
m_mem = NULL;
}
}
private:
CPU *m_cpu; //CPU的零件指针
VideoCard *m_vc; //显卡的零件指针
Memory *m_mem; //内存条的零件指针
};
//具体厂商
//Intel厂商
class IntelCPU : public CPU
{
public:
virtual void calculate()
{
cout << "Intel's CPU is calculating" << endl;
}
};
//Intel厂商
class IntelVideoCard : public VideoCard
{
public:
virtual void display()
{
cout << "Intel's VideoCard is displaying" << endl;
}
};
//Intel厂商
class IntelMemory : public Memory
{
public:
virtual void storage()
{
cout << "Intel's Memory is storaging" << endl;
}
};
//Lenovo厂商
class LenovoCPU : public CPU
{
public:
virtual void calculate()
{
cout << "Lenovo's CPU is calculating" << endl;
}
};
//Lenovo厂商
class LenovoVideoCard : public VideoCard
{
public:
virtual void display()
{
cout << "Lenovo's VideoCard is displaying" << endl;
}
};
//Lenovo厂商
class LenovoMemory : public Memory
{
public:
virtual void storage()
{
cout << "Lenovo's Memory is storaging" << endl;
}
};
void test01()
{
//第一台电脑零件
CPU *intelCpu = new IntelCPU;
VideoCard *intelCard = new IntelVideoCard;
Memory *intelMem = new IntelMemory;
cout << "the first computer is working" << endl;
//创建第一台电脑
Computer *computer1 = new Computer(intelCpu,intelCard,intelMem);
computer1->work();
delete computer1;
cout << "-------------------------------" << endl;
cout << "the second computer is working" << endl;
//创建第二台电脑
Computer *computer2 = new Computer(new LenovoCPU,new LenovoVideoCard,new LenovoMemory);
computer2->work();
delete computer2;
cout << "-------------------------------" << endl;
cout << "the third computer is working" << endl;
//创建第三台电脑
Computer *computer3 = new Computer(new IntelCPU,new LenovoVideoCard,new IntelMemory);
computer3->work();
delete computer3;
}
int main(){
test01();
system("pause");
return 0;
}
|