A. Parkway Walk
题意:
给你初始体力k,从一个座位跳到相邻的作为需要花费体力
a
i
ai
ai,可以在任意作为回复任意体力,求从起点到终点至少恢复多少体力
思路:
greedy,体力恰好足够即可,没必要多休息
code:
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
#define x first
#define y second
#define LL long long
#define int LL
#define pb push_back
#define all(v) (v).begin(),(v).end()
#define PII pair<int,int>
#define ll_INF 0x7f7f7f7f7f7f7f7f
#define INF 0x3f3f3f3f
#define debug(x) cerr << #x << ": " << x << endl
#define io ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
LL Mod(LL a,LL mod){return (a%mod+mod)%mod;}
LL lowbit(LL x){return x&-x;}
LL qmi(LL a,LL b,LL mod) {LL ans = 1; while(b){ if(b & 1) ans = ans * (a % mod) % mod; a = a % mod * (a % mod) % mod; b >>= 1;} return ans; }
int _;
int n,m;
const int N=110;
int a[N];
void solve()
{
cin>>n>>m;
for(int i=1;i<=n;i++)cin>>a[i];
int res=0;
int k=m;
for(int i=1;i<=n;i++)
{
if(k>=a[i])k-=a[i];
else res+=a[i]-k,k=0;
}
cout<<res<<endl;
}
signed main()
{
io;
cin>>_;
while(_--)
solve();
return 0;
}
B. Promo
题意:
对一个数组排序,求最大的
x
x
x 个的前
y
y
y 个最小的和
思路:
sort排序,前缀和优化一下
code:
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
#define x first
#define y second
#define LL long long
#define int LL
#define pb push_back
#define all(v) (v).begin(),(v).end()
#define PII pair<int,int>
#define ll_INF 0x7f7f7f7f7f7f7f7f
#define INF 0x3f3f3f3f
#define debug(x) cerr << #x << ": " << x << endl
#define io ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
LL Mod(LL a,LL mod){return (a%mod+mod)%mod;}
LL lowbit(LL x){return x&-x;}
LL qmi(LL a,LL b,LL mod) {LL ans = 1; while(b){ if(b & 1) ans = ans * (a % mod) % mod; a = a % mod * (a % mod) % mod; b >>= 1;} return ans; }
int _;
int n,q;
const int N=2e5+10;
int a[N];
int s[N];
void solve()
{
scanf("%lld%lld",&n,&q);
for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
sort(a+1,a+1+n);
for(int i=1;i<=n;i++)s[i]=s[i-1]+a[i];
while(q--)
{
int x,y;
scanf("%lld%lld",&x,&y);
printf("%lld\n",s[n-x+y]-s[n-x]);
}
}
signed main()
{
solve();
return 0;
}
C. awoo’s Favorite Problem
题意:
给定两个字符串
s
,
t
s,t
s,t,给定两种操作,问
s
s
s 是否能转换到
t
t
t
-
a
b
?
>
b
a
ab->ba
ab?>ba
-
b
c
?
>
c
b
bc->cb
bc?>cb
思路:
发现以
b
b
b 进行交换,
b
b
b 的位置是不受印象的,
a
a
a只能换到比原先下标大的,
c
c
c只能换到比原先下标小的。我们只存储
a
,
c
a,c
a,c的下标,判断字典序即可(a,b,c三种字符的数量首先得相同)
code:
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
#define x first
#define y second
#define LL long long
#define int LL
#define pb push_back
#define all(v) (v).begin(),(v).end()
#define PII pair<int,int>
#define ll_INF 0x7f7f7f7f7f7f7f7f
#define INF 0x3f3f3f3f
#define debug(x) cerr << #x << ": " << x << endl
#define io ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
LL Mod(LL a,LL mod){return (a%mod+mod)%mod;}
LL lowbit(LL x){return x&-x;}
LL qmi(LL a,LL b,LL mod) {LL ans = 1; while(b){ if(b & 1) ans = ans * (a % mod) % mod; a = a % mod * (a % mod) % mod; b >>= 1;} return ans; }
int _;
int n;
void solve()
{
cin>>n;
string s,t;
cin>>s>>t;
for (auto c : { 'a', 'b', 'c' })
{
if (std::count(s.begin(), s.end(), c) != std::count(t.begin(), t.end(), c)) {
std::cout << "NO\n";
return;
}
}
string a,b;
vector<int>A,B;
for(int i=0;i<n;i++)
{
if(s[i]!='b')
{
a+=s[i];
A.pb(i);
}
}
for(int i=0;i<n;i++)
{
if(t[i]!='b')
{
b+=t[i];
B.pb(i);
}
}
if(a!=b)
{
cout<<"NO"<<endl;
return;
}
for(int i=0;i<A.size();i++)
{
if(a[i]=='a'&&A[i]>B[i])
{
cout<<"NO"<<endl;
return;
}
if(a[i]=='c'&&A[i]<B[i])
{
cout<<"NO"<<endl;
return;
}
}
cout<<"YES"<<endl;
}
signed main()
{
io;
cin>>_;
while(_--)
solve();
return 0;
}
|