| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> C++知识库 -> 【C/C++】4000字浓缩内容带你深度剖析C语言数据在内存中的存储,提高C语言“内功” -> 正文阅读 |
|
[C++知识库]【C/C++】4000字浓缩内容带你深度剖析C语言数据在内存中的存储,提高C语言“内功” |
目录 一.数据类型介绍1.C语言的数据类型1.整型家族
整型家族中的类型都分为无符号类型和有符号类型,无符号类型的数不分正负,有符号类型分正负。在编译器中如果不加unsigned,默认使用的是有符号类型。 首先有人会疑惑为什么字符类型char会归入整型家族?,这是因为字符类型在内存中存放的是它的 ASCII码值,例如A在内存中如果以十进制位存放的话就是65,如果想要了解相关内容可以查ASCII表。 2.浮点型家族
?两者的精度不同,例如在vs中folat可以精确显示小数点后6位,而double可以精确显示小数点后9位。此处我们不做过多讲解,在文章的后半部分我们会着重分析浮点型在内存中的存储。 3.构造类型:自定义类型
4.指针类型
?指针的内容我在此不过多讲述,下一篇博客我会详细讲解指针的内容。 5.空类型
2.类型的意义1.类型决定了我们,使用这个类型开辟内存空间的大小。 2.类型决定了我们如何看待开辟出的内存的视角。这句话我们描述的比较抽象,结合后面我们对类型的介绍你可能会更好理解。 二、整形在内存中的存储方式1.原码、反码、补码? 1.什么是原码、反码、补码。 原码即一个整形的二进制形式,其中最高位为符号位,正数为0,负数为1 例如int a= 1,int类型是四个字节,也就是32个比特位。那么a的 原码:00000000 00000000 00000000 00000001 反码:00000000 00000000 00000000 00000001 补码:00000000 00000000 00000000 00000001 正数的原码、反码、补码都相同 而负数的反码为符号位不变其它位按位取反所得,补码则是反码加1所得 例如int a=-1 原码:10000000 00000000 00000000 00000001 补码:11111111 11111111 11111111 11111110(符号位不变,原码按位取反) 补码:11111111 11111111 11111111 11111111(补码加1) 三种表示方法都有数值位和符号位之分 在cpu的运算中只有加法器,如果计算1-1实际是通过1+(-1)实现的 而在内存中存放和计算使用的都是补码,而我们看到的都是原码。 2.大端存储和小端存储的概念1.什么是大端存储,小端存储 大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中; 小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,保存在内存的高地址中。 一个数值如果超过了一个字节存储到内存中就会存在顺序问题 我们以一个以int a=0x11223344(16进制的一种表示方法,因为一个比特位是8个字节的二进制位最大存储为253,所以两个16进制位可以存放到一个字节中)为例当我们创建了这样一个数之后,会在栈区开辟一块空间,而在这个空间的地址中由低到高是怎样存放的呢 以上面这段代码为例 我们可以看到a在内存中的存放是将低位的数据放在低地址处,而高位的数据放在高地址处,这中存储方式叫做小端存储 而将低位数据放在高地址处就叫做大端存储 下面我们画一个图来帮助大家更好的理解大端存储和小端存储 下面我们可以做几道题来帮助自己更好的理解的这部分内容。 3.整型存储知识点链接题实例及讲解1.设计一个小程序来判断当前设备是大端存储还是小端存储
思路解析:我们知道char*的指针只会访问一个字节也就是说当int a=1时它在内存中是这样存放的 ?01 00 00 00,我们使用char *的指针只访问第一个字节,那么如果访问到的是01则说明低位数据存储在低地址出,高位数据存储在高地址处是小端存储,如果访问到的是00则说明高位数据存储在低地址处是大端存储。 2.看一下这段代码,计算一下他们的结果(整型提升的概念) ? 可以看到有符号的char打印出来跟大部分人想到的结果一样,那为什么无符号数的=1打印出来就是255呢? 这是因为内存中存放的是他们的补码char a=-1,a补码是1111 1111,而unsigned char是一个无符号的整型,无符号的整型是没有符号位的,而正数的补码反码原码都是相等的,所以编译器将其补码1111 1111,当做了原码。因此在内存中unsigned char a=-1;实际储存的值是二进制的1111 1111换算成10进制就是251。 4.C语言计算过程中的整型提升概念。char是一个字符类型,而-1是一个整数类型。在使用整型进行就算时就会发生整型提升 例如char a=-1在内存中的补码是11111111在计算过程中就会在前面补它的符号位将它暂时变为一个4个字节的整型11111111 11111111 11111111 11111111然后在计算结束后再发生截断变回一个字节。 这个概念又有什么实际意义呢,下面我们通过一道小程序来了解一下
?这段代码的运行结果如下 128的二进制表现形式是10000000 如果我们要把它作为一个整型打印出来就会发生整型提升因为1占据了符号位所以整型提升就变为了11111111 11111111 11111111 10000000,实际打印的就是这个数。 三、浮点型在内存中的存储1.常见的浮点数3.14159 1e10:实际上就是1.0x10^10 浮点数家族包括:float,double,long? double类型 浮点数的范围:float.h中定义 2.浮点数的存储我们先来看一段代码
这段带码的运行结果如下 这个结果可能与部分同学想到的不同,那么为什么会出现这种结果我们下面来解释一下。 首先我们要了解一下浮点数是如何在内存中储存的 1.根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式: (-1)^S*M*2^E这种形式 其中M,S,E都是什么我们以一个实例来理解一下 例如5.5,如果我们把它表示成2进制形式为101.1,就是把5和0.5分别换为二进制形式。这里我们多讲一点,如果0.3等数如果想要换成二进制形式的话只能得到一个无限趋近的数,这也是浮点数在内存中会丢失精度的原因。 而我们把101.1换为科学计数法的话就是1.011x2^2(在十进制中我们把1000写成1.0x10^3,如果是二进制的1000的话就写成1.0x2^3) S就是符号位,如果符号位为0(-1)^0为正数,1的话就是负数。 M就是1.011,E为2 我们把两个数放在一起可以很清晰的看出(-1)^S*M*2^E ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(-1)^0*1.011*2^2 而在内存中存放的就是S,M,E这几个数 ?而对于64位的浮点数,最高的一位是符号位S,接着的11为是指数E,剩下的52位有效数字为M ?IEEE 754对有效数字M和指数E,还有一些特别规定。 1. 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。 IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的 xxxxxx部分。比如保存1.01的时 候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位 浮点数为例,留给M只有23位, 将第一位的1舍去以后,等于可以保存24位有效数字。 2.指数E,情况就比较复杂。 首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们 知道,科学计数法中的E是可以出 现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数 是127;对于11位的E,这个中间 数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即 10001001。 而对于E既然我们在存入时给他加了一些数,那么在取出时就需要一定的规则让它变回原样。 这里我们又可以分为3种情况 1.E全为0 这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于 0的很小的数字。 2.E全为1 这时,如果有效数字M全为0,表示±无穷大 3.不全为0也不全为1 这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。 到这里我们已经将浮点数在内存中的存储规则讲解完了 回到开头那道题 9放入32位之中是这种情况 0 00000000 000000000000000000001001 是E全为0的情况实际写作形式就是 (-1)^0 × 0.00000000000000000001001×2^(-126)=1.1×2^(-146) 是一个极小的接近于0的数,因此我们在小数点后6位看到的都是0 而9.0化作(-1)^S*M*2^E形式为1.001×2^3,在内存中是这种形式 0 10000010 001 0000 0000 0000 0000 0000? 如果当做整型还原成10进制的话就是一个很大的数 |
|
C++知识库 最新文章 |
【C++】友元、嵌套类、异常、RTTI、类型转换 |
通讯录的思路与实现(C语言) |
C++PrimerPlus 第七章 函数-C++的编程模块( |
Problem C: 算法9-9~9-12:平衡二叉树的基本 |
MSVC C++ UTF-8编程 |
C++进阶 多态原理 |
简单string类c++实现 |
我的年度总结 |
【C语言】以深厚地基筑伟岸高楼-基础篇(六 |
c语言常见错误合集 |
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/11 10:04:37- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |