反射
定义 Java的反射(reflection)机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意方法和属性,既然能拿到那么,我们就可以修改部分类型信息;这种动态获取信息以及动态调用对象方法的功能称为java语言的反射(reflection)机制。
** 用途(了解)** 1、在日常的第三方应用开发过程中,经常会遇到某个类的某个成员变量、方法或是属性是私有的或是只对系统应用开放,这时候就可以利用Java的反射机制通过反射来获取所需的私有成员或是方法 。 2、反射最重要的用途就是开发各种通用框架,比如在spring中,我们将所有的类Bean交给spring容器管理,无论是XML配置Bean还是注解配置,当我们从容器中获取Bean来依赖注入时,容器会读取配置,而配置中给的就是类的信息,spring根据这些信息,需要创建那些Bean,spring就动态的创建这些类。
反射基本信息 Java程序中许多对象在运行时会出现两种类型:运行时类型(RTTI)和编译时类型,例如Person p = new Student();这句代码中p在编译时类型为Person,运行时类型Student。程序需要在运行时发现对象和类的真实信心。而通过使用反射程序就能判断出该对象和类属于哪些类。
反射相关的类(重要)
 ** Class类(反射机制的起源 )** Class帮助文档代表类的实体,在运行的Java应用程序中表示类和接口 .
Java文件被编译后,生成了.class文件,JVM此时就要去解读.class文件 ,被编译后的Java文件.class也被JVM解析为一个对象,这个对象就是 java.lang.Class .这样当程序在运行时,每个java文件就最终变成了Class类对象的一个实例。我们通过Java的反射机制应用到这个实例,就可以去获得甚至去添加改变这个类的属性和动作,使得这个类成为一个动态的类 .
Class类中的相关方法(方法的使用方法在后边的示例当中)

(重要)常用获得类中属性相关的方法(以下方法返回值为Field相关)

(了解)获得类中注解相关的方法

(重要)获得类中构造器相关的方法(以下方法返回值为Constructor相关)

(重要)获得类中方法相关的方法(以下方法返回值为Method相关)

反射示例
获得Class对象的三种方式
在反射之前,我们需要做的第一步就是先拿到当前需要反射的类的Class对象,然后通过Class对象的核心方法,达到反射的目的,即:在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意方法和属性,既然能拿到那么,我们就可以修改部分类型信息
第一种,使用 Class.forName(“类的全路径名”); 静态方法。 前提:已明确类的全路径名。 第二种,使用 .class 方法。 说明:仅适合在编译前就已经明确要操作的 Class 第三种,使用类对象的 getClass() 方法
class Student{
private String name = "bit";
public int age = 18;
public Student(){
System.out.println("Student()");
}
private Student(String name,int age) {
this.name = name;
this.age = age;
System.out.println("Student(String,name)");
}
private void eat(){
System.out.println("i am eat");
}
public void sleep(){
System.out.println("i am pig");
}
private void function(String str) {
System.out.println(str);
}
@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
}
public class TestDemo {
public static void main(String[] args) {
Student s1 = new Student();
Class c1 = s1.getClass();
Class c2 = Student.class;
Class c3 = null;
try {
c3 = Class.forName("Student");
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
System.out.println(c1.equals(c2));
System.out.println(c1.equals(c3));
System.out.println(c2.equals(c3));
}
}
反射的使用
接下来我们开始使用反射,我们依旧反射上面的Student类,把反射的逻辑写到另外的类当中进行理解
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
public class ReflectClassDemo {
public static void reflectNewInstance() {
try {
Class<?> classStudent = Class.forName("Student");
Object objectStudent = classStudent.newInstance();
Student student = (Student) objectStudent;
System.out.println("获得学生对象:"+student);
} catch (Exception ex) {
ex.printStackTrace();
}
}
public static void reflectPrivateConstructor() {
try {
Class<?> classStudent = Class.forName("Student");
Constructor<?> declaredConstructorStudent =
classStudent.getDeclaredConstructor(String.class,int.class);
declaredConstructorStudent.setAccessible(true);
Object objectStudent = declaredConstructorStudent.newInstance("高博",15);
Student student = (Student) objectStudent;
System.out.println("获得私有构造哈数且修改姓名和年龄:"+student);
} catch (Exception ex) {
ex.printStackTrace();
}
}
public static void reflectPrivateField() {
try {
Class<?> classStudent = Class.forName("Student");
Field field = classStudent.getDeclaredField("name");
field.setAccessible(true);
Object objectStudent = classStudent.newInstance();
Student student = (Student) objectStudent;
field.set(student,"小明");
String name = (String) field.get(student);
System.out.println("反射私有属性修改了name:"+ name);
} catch (Exception ex) {
ex.printStackTrace();
}
}
public static void reflectPrivateMethod() {
try {
Class<?> classStudent = Class.forName("Student");
Method methodStudent = classStudent.getDeclaredMethod("function",String.class);
System.out.println("私有方法的方法名为:"+methodStudent.getName());
methodStudent.setAccessible(true);
Object objectStudent = classStudent.newInstance();
Student student = (Student) objectStudent;
methodStudent.invoke(student,"我是给私有的function函数传的参数");
} catch (Exception ex) {
ex.printStackTrace();
}
}
public static void main(String[] args) {
reflectPrivateMethod();
}
}
反射优点和缺点
优点:
- 对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法
- 增加程序的灵活性和扩展性,降低耦合性,提高自适应能力
- 反射已经运用在了很多流行框架如:Struts、Hibernate、Spring 等等。
缺点:
- 使用反射会有效率问题。会导致程序效率降低。具体参考这里:http://www.imooc.com/article/293679
- 反射技术绕过了源代码的技术,因而会带来维护问题。反射代码比相应的直接代码更复杂 。
枚举的使用
背景及定义 枚举是在JDK1.5以后引入的。主要用途是:将一组常量组织起来,在这之前表示一组常量通常使用定义常量的方式:
public static int final RED = 1;
public static int final GREEN = 2;
public static int final BLACK = 3;
但是常量举例有不好的地方,例如:可能碰巧有个数字1,但是他有可能误会为是RED,现在我们可以直接用枚举来进行组织,这样一来,就拥有了类型,枚举类型。而不是普通的整形1.
public enum TestEnum {
RED,BLACK,GREEN;
}
优点:将常量组织起来统一进行管理 场景:错误状态码,消息类型,颜色的划分,状态机等等… 本质:是 java.lang.Enum 的子类,也就是说,自己写的枚举类,就算没有显示的继承 Enum ,但是其默认继承了这个类。
switch语句
public enum TestEnum {
RED,BLACK,GREEN,WHITE;
public static void main(String[] args) {
TestEnum testEnum2 = TestEnum.BLACK;
switch (testEnum2) {
case RED:
System.out.println("red");
break;
case BLACK:
System.out.println("black");
break;
case WHITE:
System.out.println("WHITE");
break;
case GREEN:
System.out.println("black");
break;
default:
break;
}
}
}
常用方法 Enum 类的常用方法

public enum TestEnum {
RED,BLACK,GREEN,WHITE;
public static void main(String[] args) {
TestEnum[] testEnum2 = TestEnum.values();
for (int i = 0; i < testEnum2.length; i++) {
System.out.println(testEnum2[i] + " " + testEnum2[i].ordinal());
}
System.out.println("=========================");
System.out.println(TestEnum.valueOf("GREEN"));
}
}
public enum TestEnum {
RED,BLACK,GREEN,WHITE;
public static void main(String[] args) {
TestEnum testEnum = TestEnum.BLACK;
TestEnum testEnum21 = TestEnum.RED;
System.out.println(testEnum.compareTo(testEnum21));
System.out.println(BLACK.compareTo(RED));
System.out.println(RED.compareTo(BLACK));
}
}
重要:枚举的构造方法默认是私有的
public enum TestEnum {
RED("red",1),BLACK("black",2),WHITE("white",3),GREEN("green",4);
private String name;
private int key;
private TestEnum (String name,int key) {
this.name = name;
this.key = key;
}
public static TestEnum getEnumKey (int key) {
for (TestEnum t: TestEnum.values()) {
if(t.key == key) {
return t;
}
}
return null;
}
public static void main(String[] args) {
System.out.println(getEnumKey(2));
}
}
枚举优点缺点
优点:
- 枚举常量更简单安全 。
- 枚举具有内置方法 ,代码更优雅
缺点: - 不可继承,无法扩展
枚举和反射
我们刚刚在反射里边看到了,任何一个类,哪怕其构造方法是私有的,我们也可以通过反射拿到他的实例对象,那么枚举的构造方法也是私有的,我们是否可以拿到呢?接下来,我们来实验一下:同样利用上述提供的枚举类来进行举例
public enum TestEnum {
RED("red",1),BLACK("black",2),WHITE("white",3),GREEN("green",4);
private String name;
private int key;
private TestEnum (String name,int key) {
this.name = name;
this.key = key;
}
public static TestEnum getEnumKey (int key) {
for (TestEnum t: TestEnum.values()) {
if(t.key == key) {
return t;
}
}
return null;
}
public static void reflectPrivateConstructor() {
try {
Class<?> classStudent = Class.forName("TestEnum");
int。
Constructor<?> declaredConstructorStudent =
classStudent.getDeclaredConstructor(String.class,int.class);
declaredConstructorStudent.setAccessible(true);
Object objectStudent = declaredConstructorStudent.newInstance("绿色",666);
TestEnum testEnum = (TestEnum) objectStudent;
System.out.println("获得枚举的私有构造函数:"+testEnum);
} catch (Exception ex) {
ex.printStackTrace();
}
}
public static void main(String[] args) {
reflectPrivateConstructor();
}
}
 老铁们啊,看到没有哇!异常信息是: java.lang.NoSuchMethodException: TestEnum.(java.lang.String,int) ,什么意思是:就是没有对应的构造方法,我的天呐!我们提供的枚举的构造方法就是两个参数分别是String 和 int 啊!!!!问题出现在哪里呢,我们所有的枚举类,都是默认继承与java.lang.Enum ,说到继承,继承了什么?继承了父类除构造函数外的所有东西,并且子类要帮助父类进行构造! 而我们写的类,并没有帮助父类构造!那意思是,我们要在自己的枚举类里面,提供super吗?不是的,枚举比较特殊,虽然我们写的是两个,但是默认他还添加了两个参数,哪两个参数呢?我们看一下Enum类的源码:
protected Enum(String name, int ordinal) {
this.name = name;
this.ordinal = ordinal;
}
也就是说,我们自己的构造函数有两个参数一个是String一个是int,同时他默认后边还会给两个参数,一个是String一个是int。也就是说,这里我们正确给的是4个参数:
public static void reflectPrivateConstructor() {
try {
Class<?> classStudent = Class.forName("TestEnum");
int。
Constructor<?> declaredConstructorStudent =
classStudent.getDeclaredConstructor(String.class,int.class,String.class,int.class);
declaredConstructorStudent.setAccessible(true);
Object objectStudent = declaredConstructorStudent.newInstance("绿色",666,"父类参
数",888);
TestEnum testEnum = (TestEnum) objectStudent;
System.out.println("获得枚举的私有构造函数:"+testEnum);
} catch (Exception ex) {
ex.printStackTrace();
}
}

面试问题(单例模式学完后可以回顾):
public class Singleton {
private volatile static Singleton uniqueInstance;
private Singleton() {}
public static Singleton getInstance() {
if (uniqueInstance == null) {
synchronized (Singleton.class){
if(uniqueInstance == null){
uniqueInstance = new Singleton();
}
}
}
return uniqueInstance;
}
}
用静态内部类实现一个单例模式
class Singleton {
private Singleton() {
}
public static Singleton getInstance() {
return UserSingletonHolder.INSTANCE;
}
private static class UserSingletonHolder {
private static final Singleton INSTANCE = new Singleton();
}
}
public class Main {
public static void main(String[] args) {
Singleton u1 = Singleton.getInstance();
Singleton u2 = Singleton.getInstance();
System.out.println("两个实例是否相同:"+ (u1==u2));
}
}
用枚举实现一个单例模式
public enum TestEnum {
INSTANCE;
public TestEnum getInstance(){
return INSTANCE;
}
public static void main(String[] args) {
TestEnum singleton1=TestEnum.INSTANCE;
TestEnum singleton2=TestEnum.INSTANCE;
System.out.println("两个实例是否相同:"+(singleton1==singleton2));
}
}
Lambda表达式
背景
Lambda表达式是Java SE 8中一个重要的新特性。lambda表达式允许你通过表达式来代替功能接口。 lambda表达式就和方法一样,它提供了一个正常的参数列表和一个使用这些参数的主体(body,可以是一个表达式或一个代码块)。 Lambda 表达式(Lambda expression)可以看作是一个匿名函数,基于数学中的λ演算得名,也可称为闭包(Closure) 。
Lambda表达式的语法
基本语法: (parameters) -> expression 或 (parameters) ->{ statements; }
Lambda表达式由三部分组成:
-
paramaters:类似方法中的形参列表,这里的参数是函数式接口里的参数。这里的参数类型可以明确的声明也可不声明而由JVM隐含的推断。另外当只有一个推断类型时可以省略掉圆括号。 -
->:可理解为“被用于”的意思 -
方法体:可以是表达式也可以代码块,是函数式接口里方法的实现。代码块可返回一个值或者什么都不反回,这里的代码块块等同于方法的方法体。如果是表达式,也可以返回一个值或者什么都不反回。
() -> 2
x -> 2 * x
(x, y) -> x + y
(int x, int y) -> x * y
(String s) -> System.out.print(s
函数式接口
注意:
- 如果一个接口只有一个抽象方法,那么该接口就是一个函数式接口
- 如果我们在某个接口上声明了 @FunctionalInterface 注解,那么编译器就会按照函数式接口的定义来要求该接口,这样如果有两个抽象方法,程序编译就会报错的。所以,从某种意义上来说,只要你保证你的接口中只有一个抽象方法,你可以不加这个注解。加上就会自动进行检测的。
@FunctionalInterface
interface NoParameterNoReturn {
void test();
}
@FunctionalInterface
interface NoParameterNoReturn {
void test();
default void test2() {
System.out.println("JDK1.8新特性,default默认方法可以有具体的实现");
}
}
Lambda表达式的基本使用
@FunctionalInterface
interface NoParameterNoReturn {
void test();
}
@FunctionalInterface
interface OneParameterNoReturn {
void test(int a);
}
@FunctionalInterface
interface MoreParameterNoReturn {
void test(int a,int b);
}
@FunctionalInterface
interface NoParameterReturn {
int test();
}
@FunctionalInterface
interface OneParameterReturn {
int test(int a);
}
@FunctionalInterface
interface MoreParameterReturn {
int test(int a,int b);
}
我们在上面提到过,Lambda表达式本质是一个匿名函数,函数的方法是:返回值 方法名 参数列表 方法体。在,Lambda表达式中我们只需要关心:参数列表 方法体。
public class TestDemo {
public static void main(String[] args) {
NoParameterNoReturn noParameterNoReturn = ()->{
System.out.println("无参数无返回值");
};
noParameterNoReturn.test();
OneParameterNoReturn oneParameterNoReturn = (int a)->{
System.out.println("无参数一个返回值:"+ a);
};
oneParameterNoReturn.test(10);
MoreParameterNoReturn moreParameterNoReturn = (int a,int b)->{
System.out.println("无返回值多个参数:"+a+" "+b);
};
moreParameterNoReturn.test(20,30);
NoParameterReturn noParameterReturn = ()->{
System.out.println("有返回值无参数!");
return 40;
};
int ret = noParameterReturn.test();
System.out.println(ret);
OneParameterReturn oneParameterReturn = (int a)->{
System.out.println("有返回值有参数!");
return a;
};
ret = oneParameterReturn.test(50);
System.out.println(ret);
MoreParameterReturn moreParameterReturn = (int a,int b)->{
System.out.println("有返回值多个参数!");
return a+b;
};
ret = moreParameterReturn.test(60,70);
System.out.println(ret);
}
}
1. 参数类型可以省略,如果需要省略,每个参数的类型都要省略。 2. 参数的小括号里面只有一个参数,那么小括号可以省略 3. 如果方法体当中只有一句代码,那么大括号可以省略 4. 如果方法体中只有一条语句,其是return语句,那么大括号可以省略,且去掉return关键字。
public static void main(String[] args) {
MoreParameterNoReturn moreParameterNoReturn = ( a, b)->{
System.out.println("无返回值多个参数,省略参数类型:"+a+" "+b);
};
moreParameterNoReturn.test(20,30);
OneParameterNoReturn oneParameterNoReturn = a ->{
System.out.println("无参数一个返回值,小括号可以胜率:"+ a);
};
oneParameterNoReturn.test(10);
NoParameterNoReturn noParameterNoReturn = ()->System.out.println("无参数无返回值,方法体中只有
一行代码");
noParameterNoReturn.test();
NoParameterReturn noParameterReturn = ()-> 40;
int ret = noParameterReturn.test();
System.out.println(ret);
}
匿名内部类
匿名内部类就是没有名字的内部类 。我们这里只是为了说明变量捕获,所以,匿名内部类只要会使用就好,那么下面我们来,简单的看看匿名内部类的使用就好了。 具体想详细了解的同学戳这里:https://www.cnblogs.com/SQP51312/p/6100314.html
我们通过简单的代码来学习一下
class Test {
public void func(){
System.out.println("func()");
}
}
public class TestDemo {
public static void main(String[] args) {
new Test(){
@Override
public void func() {
System.out.println("我是内部类,且重写了func这个方法!");
}
};
}
}
匿名内部类的变量捕获
class Test {
public void func(){
System.out.println("func()");
}
}
public class TestDemo {
public static void main(String[] args) {
int a = 100;
new Test(){
@Override
public void func() {
System.out.println("我是内部类,且重写了func这个方法!");
System.out.println("我是捕获到变量 a == "+a
+" 我是一个常量,或者是一个没有改变过值的变量!");
}
};
}
}
Lambda的变量捕获
@FunctionalInterface
interface NoParameterNoReturn {
void test();
}
public static void main(String[] args) {
int a = 10;
NoParameterNoReturn noParameterNoReturn = ()->{
System.out.println("捕获变量:"+a);
};
noParameterNoReturn.test();
}
Lambda在集合当中的使用 
以上方法的作用可自行查看我们发的帮助手册。我们这里会示例一些方法的使用。注意:Collection的forEach()方法是从接口 java.lang.Iterable 拿过来的
Collection接口
forEach() 方法演示 该方法在接口 Iterable 当中,原型如下:
default void forEach(Consumer<? super T> action) {
Objects.requireNonNull(action);
for (T t : this) {
action.accept(t);
}
}
该方法表示:对容器中的每个元素执行action指定的动作
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<>();
list.add("Hello");
list.add("bit");
list.add("hello");
list.add("lambda");
list.forEach(new Consumer<String>(){
@Override
public void accept(String str){
System.out.print(str+" ");
}
});
}
输出结果:Hello bit hello lambda
List接口
sort()方法的演示 sort方法源码:该方法根据c指定的比较规则对容器元素进行排序。
public void sort(Comparator<? super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, size, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<>();
list.add("Hello");
list.add("bit");
list.add("hello");
list.add("lambda");
list.sort(new Comparator<String>() {
@Override
public int compare(String str1, String str2){
return str1.length()-str2.length();
}
});
System.out.println(list);
}
输出结果:bit, Hello, hello, lambda
修改为lambda表达式
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<>();
list.add("Hello");
list.add("bit");
list.add("hello");
list.add("lambda");
list.sort((str1,str2)-> str1.length()-str2.length());
System.out.println(list);
}
** Map接口**
HashMap 的 forEach() 该方法原型如下
default void forEach(BiConsumer<? super K, ? super V> action) {
Objects.requireNonNull(action);
for (Map.Entry<K, V> entry : entrySet()) {
K k;
V v;
try {
k = entry.getKey();
v = entry.getValue();
} catch(IllegalStateException ise) {
throw new ConcurrentModificationException(ise);
}
action.accept(k, v);
}
}
作用是对Map中的每个映射执行action指定的操作。 代码示例:
public static void main(String[] args) {
HashMap<Integer, String> map = new HashMap<>();
map.put(1, "hello");
map.put(2, "bit");
map.put(3, "hello");
map.put(4, "lambda");
map.forEach(new BiConsumer<Integer, String>(){
@Override
public void accept(Integer k, String v){
System.out.println(k + "=" + v);
}
});
}
输出结果: 1=hello 2=bit 3=hello 4=lambda
使用lambda表达式后的代码:
public static void main(String[] args) {
HashMap<Integer, String> map = new HashMap<>();
map.put(1, "hello");
map.put(2, "bit");
map.put(3, "hello");
map.put(4, "lambda");
map.forEach((k,v)-> System.out.println(k + "=" + v));
}
输出结果: 1=hello 2=bit 3=hello 4=lambda
Lambda表达式的优点很明显,在代码层次上来说,使代码变得非常的简洁。缺点也很明显,代码不易读。 优点:
- 代码简洁,开发迅速
- 方便函数式编程
- 非常容易进行并行计算
- Java 引入 Lambda,改善了集合操作
缺点: - 代码可读性变差
- 在非并行计算中,很多计算未必有传统的 for 性能要高
- 不容易进行调试
|