IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Java知识库 -> 小逗逼的连载-10.g1 youngGC源码的中提到过关于g1写屏障和Rset(记忆集合 -> 正文阅读

[Java知识库]小逗逼的连载-10.g1 youngGC源码的中提到过关于g1写屏障和Rset(记忆集合

? 笔者在之前讲解g1 youngGC源码的中提到过关于g1写屏障和Rset(记忆集合)等相关知识点,之前限于文章长度(ps:全部介绍完博客会比较长)跳过了这个部分只是简单介绍了下概念,今天我们来继续从源码出发,探究g1的写屏障和记忆集合等相关技术内幕。

????? ? 一.写屏障(write barrier)

关于写屏障,其实要从垃圾回收的三色标记说起,网上关于三色标记的文章很多,具体说明也比较详细,笔者在这里就不在进行详细说明,本文的重点还是放在源码解析与阅读上。

在三色标记算法中,只有同时满足以下两种条件就会产生漏标的问题:

  1. 灰色对象断开了白色对象的引用(直接或间接的引用);即灰色对象原来成员变量的引用发生了变化。
  2. 黑色对象重新引用了该白色对象;即黑色对象成员变量增加了新的引用。

我们只要破坏其中一个条件就可以解决这个问题,而解决这个问题就需要用到读屏障和写屏障,在jvm的垃圾回收器中,zgc使用的是读屏障,笔者有篇相关博客专门介绍了zgc的技术内幕而我们现在说的g1则是使用的写屏障,准确的说是SATB+写屏障(cms用的是写屏障+增量更新)。

写屏障是在对象属性引用另一个对象的时候才会触发,我们先写一段这样的java代码:

public class Test {
 public static void main(String[] args) {
        A a = new A();
        B b = new B();
        //这里我们将A对象的两个属性以不同方式修改引用
        //1.public修饰的b属性直接修改
        //2.private修饰的c属性用set方法修改
        a.b = b;
        a.b = null;
        a.setC(b);
        a.setC(null);
 }
}

public class A {

    public B b;

    private B c;

    public void setC(B c) {
        this.c = c;
    }
}

public class B {

}

因为java是先编译成.class字节码文件,之后由jvm将字节码逐行进行解释执行(当然弱代码执行的次数达到一定阈值,也会将其编译成机器码,本文重点不在这里,笔者就不过多阐述)

我们将刚才写的代码编译成.class文件,用字节码反编译器查看下字节码:

A.class 的set方法

0 aload_0
1 aload_1
//我们看到这里调用了putfield字节码
2 putfield #2 <B.a : Ljava/lang/String;>
5 return

Test.class 的main方法

 0 new #2 <A>
 3 dup
 4 invokespecial #3 <A.<init> : ()V>
 7 astore_1
 8 new #4 <B>
11 dup
12 invokespecial #5 <B.<init> : ()V>
15 astore_2
//这里是两个入栈操作,后面我们会讲到
16 aload_1
17 aload_2
//我们看到这里调用了putfield字节码
18 putfield #6 <A.b : LB;>
21 aload_1
22 aconst_null
//我们看到这里调用了putfield字节码
23 putfield #6 <A.b : LB;>
26 aload_1
27 aload_2
28 invokevirtual #7 <A.setC : (LB;)V>
31 aload_1
32 aconst_null
33 invokevirtual #7 <A.setC : (LB;)V>
36 return

由此可见putfield字节码命令就是我们这次查看源码的入口啦!

从jdk的源码中找到putfield的字节码命令,在templateTable.cpp中,这个文件是模板解释器,我们简单介绍下,模板解释器是字节码解释器(早期版本jdk的解释器)的优化,早期字节码解释器是逐条翻译,效率低下现在已经不用了,而模板解释器是将每一条字节码与一个模板函数(主要是汇编)关联,用模板函数直接生成机器码从而提高性能。

我们来看看putfield的定义:

void TemplateTable::initialize() {
  ......
  //def方法是用来创建模板的,我们可以简单理解成会将字节码putfield和putfield模板进行关联
  //当碰到putfield字节码,就会调用putfield函数模板
  def(Bytecodes::_putfield, ubcp|____|clvm|____, vtos, vtos, putfield,f2_byte);

}

我们直接来看putfield函数模板:

//putfield模板
void TemplateTable::putfield(int byte_no) {
  //第二个参数是是否是static属性
  putfield_or_static(byte_no, false);
}
//我们看到这个方法里就由很多封装的汇编指令了,我们略过一些汇编指令,来看下写屏障的核心逻辑
void TemplateTable::putfield_or_static(int byte_no, bool is_static) {

  ......

  //获取属性的地址(用对象和属性的偏移量封装成address)
  const Address field(obj, off, Address::times_1);
  ......

  // 对象类型
  { 
    //这个方法会出栈一个对象引用,并将其放入rax寄存器(内存寄存器)中
    //这里解释下,我们的例子中字节码是这样的 
    //aload_1
    //aload_2
    //putfield
    //局部变量表中编号1是引用a, 编号2是引用b,都是引用类型,存的都是地址
    //在执行aload_2前会把aload_1加载的a引用入栈
    //在执行putfield前会把aload_2加载的b引用入栈
    //所以这里第一次出栈是b的引用
    __ pop(atos);
    //第二次出栈是a的引用
    if (!is_static) pop_and_check_object(obj);
    //存储对象的方法,我们进去看下
    do_oop_store(_masm, field, rax, _bs->kind(), false);
    if (!is_static) www.wanjiashidai.com{
      patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
    }
    //跳到结束
    __ jmp(Done);
  }
  //后面是一些其他基本类型,这里就不进行展开
  ......
}
//这个方法逻辑还是比较清晰的
//这里注意obj是可以理解为a.b这个引用,后文会统一用obj代替a.b这个引用
//val也是指向B对象的引用
static void do_oop_store(InterpreterMacroAssembler* _masm,
                         Address obj,
                         Register val,
                         BarrierSet::Name barrier,
                         bool precise) {
  //根据屏障类型判断
  switch (barrier) {
    //g1这里会走这个分支
    case BarrierSet::G1SATBCT:
    case BarrierSet::G1SATBCTLogging:
      {
        //这里判断如果obj不是属性,则直接将obj的值传输到rdx寄存器(本案例中不会进入这里)
        if (obj.index() == noreg && obj.disp() == 0) {
          if (obj.base() != rdx) {
            __ movq(rdx, obj.base());
          }
        } else {
          //这里会把传入的a引用地址传输到rdx寄存器
          __ leaq(rdx, obj);
        }
        //写前屏障,主要是SATB处理
        //这里的横线__是汇编器的别名,根据不同的系统会调用不同的汇编器
        //本文我们只看64位linux的代码
        //rdx和rbx都是内存寄存器
        //rdx此时已经存储了obj的地址
        __ g1_write_barrier_pre(rdx /* obj */,
                                rbx /* pre_val */,
                                r15_thread /* thread */,
                                r8  /* tmp */,
                                val != noreg /* tosca_live */,
                                false /* expand_call */);
        //如果对象是null则进入这个方法,在a.b上存空值
        if (val == noreg) {
          __ store_heap_oop_null(Address(rdx, 0));
        } else {
          ......
          //把指向b对象的引用存到a.b上
          //准确的说是把引用存到本例中A对象的b属性偏移量上
          __ store_heap_oop(Address(rdx, 0), val);
          //写后屏障
          __ g1_write_barrier_post(rdx /* store_adr */,
                                   new_val /* new_val */,
                                   r15_thread /* thread */,
                                   r8 /* tmp */,
                                   rbx /* tmp2 */);
        }
      }
      break;
    //非g1会走这个分支,我们就不再展开
    case BarrierSet::CardTableModRef:
    case BarrierSet::CardTableExtension:
      {
        if (val == noreg) {
          __ store_heap_oop_null(obj);
        } else {
          __ store_heap_oop(obj, val);
          if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
            __ store_check(obj.base());
          } else {
            __ leaq(rdx, obj);
            __ store_check(rdx);
          }
        }
      }
      break;
  ......
}

这里涉及到的入栈出栈的知识点是——栈顶缓存,网上有许多关于这方面的文章,有兴趣的读者可以自行了解下,这里就不做过多介绍。

我们看到在引用对象的方法之前和之后都由屏障,类似切面,我们来看看这两个屏障方法:

//找到x86架构的汇编器文件macroAssembler_x86.cpp
//写前屏障方法
void MacroAssembler::g1_write_barrier_pre(Register obj,
                                          Register pre_val,
                                          Register thread,
                                          Register tmp,
                                          bool tosca_live,
                                          bool expand_call) {
  //前面很多封装的汇编指令我们忽略,会做一些检测
  ......
  //如果obj不为空,我们就根据obj引用获取其之前引用的对象的地址
  if (obj != noreg) {
    load_heap_oop(pre_val, Address(obj, 0));
  }
  //这个命令其实是比较之前的对象是不是空值,如果是空值则不继续执行
  cmpptr(pre_val, (int32_t) NULL_WORD);
  jcc(Assembler::equal, done);
  ......
  //这里是false
  if (expand_call) {
    LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
    pass_arg1(this, thread);
    pass_arg0(this, pre_val);
    MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  } else {
    //这里会用汇编指令调用SharedRuntime::g1_wb_pre这个方法
    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  }
  ......
}
//真正的写前屏障方法,JRT_LEAF可以理解是一个定义方法的宏
JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
  if (orig == NULL) {
    assert(false, "should be optimized out");
    return;
  }
  //将对象的指针加入satb标记队列
  thread->satb_mark_queue().enqueue(orig);
JRT_END

//写后屏障方法
void MacroAssembler::g1_write_barrier_post(Register store_addr,
                                           Register new_val,
                                           Register thread,
                                           Register tmp,
                                           Register tmp2) {
#ifdef _LP64
  assert(thread == r15_thread, "must be");
#endif // _LP64

  Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
                                       PtrQueue::byte_offset_of_index()));
  Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
                                       PtrQueue::byte_offset_of_buf()));

  BarrierSet* bs = Universe::heap()->barrier_set();
  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");

  Label done;
  Label runtime;

  //下面几条命令涉及到汇编逻辑比较,有兴趣的读者可以自行查阅,笔者这里就不进行展开
  //判断是否跨regions
  //先将引用的地址放到r8寄存器(tmp参数上个方法传入的)中
  //再将新对象的地址和r8中的地址进行异或运算,结果存入r8中
  //之后将r8的结果逻辑右移LogOfHRGrainBytes位(region大小的log指数+1),并将移出的最后一位加入cf指示器
  //最后判断cf中是0还是1即可判断store_addr与new_val两个地址之间是否相差一个region大小
  //0即不相差,1即相差
  movptr(tmp, store_addr);
  xorptr(tmp, new_val);
  shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  jcc(Assembler::equal, done);

  //判断是否为空
  cmpptr(new_val, (int32_t) NULL_WORD);
  jcc(Assembler::equal, done);

  const Register card_addr = tmp;
  const Register cardtable = tmp2;
  //将存储的地址赋值给card_addr变量
  movptr(card_addr, store_addr);
  //将地址逻辑右移card_shift个位,可以理解为计算出其所属card的index
  shrptr(card_addr, CardTableModRefBS::card_shift);
  //加载卡表数组的基址的偏移量到cardtable
  movptr(cardtable, (intptr_t)ct->byte_map_base);
  //加上卡表数组的基址偏移量即可算出card在card数组中的有效地址
  addptr(card_addr, cardtable);
  //判断是否是young区的卡,如果是则不继续执行
  cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
  jcc(Assembler::equal, done);

  //判断是否已经是脏卡,如果是则不继续执行
  cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  jcc(Assembler::equal, done);

  //将card赋值脏卡
  movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  ......

  //执行写后屏障方法
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  
  ......
}

//真正的写后屏障
JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
  //将card加入dcq队列
  thread->dirty_card_queue().enqueue(card_addr);
JRT_END

这里用到的汇编命令比较多,笔者将几步关键步骤进行了标注,如果有兴趣,读者可以自行了解下相关命令,这里就不进行过多讲解。

到这里我们都知道g1修改对象属性引用时会使用的两种写屏障,并且为了提高效率都是先将要处理的数据放到队列中:

1.写前屏障——处理SATB(本质是快照,用于解决并发标记时修改引用可能会造成漏标的问题),将修改前引用的对象的地址加入satb队列,待到gc并发标记的时候处理。(关于写前屏障本文不重点介绍,以后笔者会介绍GC相关的文章中再介绍)

2.写后屏障——找到对应的card标记为dirty_card,加入dirty_card队列

本文我们重点关注下写后屏障,通过上面的源码分析,我们已经看到被修改过引用所处的card都已经被标记为dirty_card,即将卡表数组(本质是字节数组,元素可以理解为是一个标志)中对对应元素进行修改为dirty_card。说到card(卡页),dirty_card(脏卡),我们不得不先从他们的起源card_table(卡表)说起。

????? ? 二.卡表(card_table)

?????? ? 在写后屏障的源码中有一段关于card计算的汇编代码,可能比较难以理解,笔者在这里画个图来方便解释,通过这张图我们也可以理解卡表,卡页,脏卡的概念:

结合图和我们之前看的写屏障的源码,我们概括下卡表,卡页,脏卡还有写屏障的关系:

卡表(card_table)全局只有一个可以理解为是一个bitmap,并且其中每个元素即是卡页(card)与堆中的512字节内存相互映射,当这512个字节中的引用发生修改时,写屏障就会把这个卡页标记为脏卡(dirty_card)。

接下来我们看看卡表创建的源码:

//卡表相关类的初始化列表
CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
                                     int max_covered_regions):
  ModRefBarrierSet(max_covered_regions),
  _whole_heap(whole_heap),
  _guard_index(cards_required(whole_heap.word_size()) - 1),
  _last_valid_index(_guard_index - 1),
  _page_size(os::vm_page_size()),
  _byte_map_size(compute_byte_map_size())
{  
  .....
  //申请一段内存空间,大小为_byte_map_size
  //且没有传入映射内存映射的基础地址,即从随机地址映射
  //底层会调内核mmap(),这里就不进行展开
  ReservedSpace heap_rs(_byte_map_size, rs_align, false);
  MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
  ...
  //赋值给卡表
  _byte_map = (jbyte*) heap_rs.base();
  //计算偏移量
  byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  .....

}

网上许多文章会说卡表是在堆中的,然而从源码中我们可以看到严格来说并不是属于java_heap管理的,而是一段额外的数组进行管理。

我们再看看java_heap内存申请的代码:

//申请堆内存的方法,会在申请card_table之前申请
ReservedSpace Universe::reserve_heap(size_t heap_size, size_t alignment) {
  ......
  //计算堆的地址
  char* addr = Universe::preferred_heap_base(total_reserved, alignment, Universe::UnscaledNarrowOop);
  //total_reserved是最大堆内存
  //申请内存,这里会传入地址从特定地址开始申请,默认从0开始申请最大堆内存
  ReservedHeapSpace total_rs(total_reserved, alignment, use_large_pages, addr);
  .....
  return total_rs;
}
//进入下面的初始化列表方法
ReservedHeapSpace::ReservedHeapSpace(size_t size, size_t alignment,
                                     bool large, char* requested_address) :
  //ReservedHeapSpace是ReservedSpace的子类底层还是会调用mmap()
  ReservedSpace(size, alignment, large,
                requested_address,
                (UseCompressedOops && (Universe::narrow_oop_base() != NULL) &&
                 Universe::narrow_oop_use_implicit_null_checks()) ?
                  lcm(os::vm_page_size(), alignment) : 0) {
  if (base() > 0) {
    //注意这里标记的是mtJavaHeap,即为javaHeap申请的内存
    MemTracker::record_virtual_memory_type((address)base(), mtJavaHeap);
  }
  protect_noaccess_prefix(size);
}

由于card_table在heap之后才会申请创建,且是随机映射,而heap是根据对应地址去映射,所以card_table并不是使用的heap空间。

????? ??三.记忆集合(Remembered Set)

? ? ? ?了解了卡表和写屏障等相关知识,我们就可以继续看源码了,在应用中不免会存在跨代的引用关系,我们在youngGC时就不得不扫描老年代的region,甚至整个老年代,而老年代占堆的比例是相当大的,所以为了节省开销,增加效率就有了记忆集合(玩家时代:www.wanjiashidai.com),专门用来记录跨代引用,方便我们在GC的时候直接处理记忆集合从而避免遍历老年代,在每个region中都有一个记忆集合。

? ? ? ?怎样才能完整的记录所有的跨代引用呢?再jvm中我们其实借助的是写屏障和卡表来记录,每次的引用修改都会执行我们的写屏障方法,而写屏障方法会把对应位置的卡页标记为脏卡,并加入脏卡队列中,这样所有的有效引用关关系都会在脏卡队列中,只要我们处理脏卡队列,就可以从中过滤出所有跨代引用。

? ? ? ?脏卡队列一般是Refine线程异步处理,Refine线程中存在白,绿,黄,红四个标记,不同的标记处理脏卡队列的refine线程数不一样,当到达红标记时,Mutator线程(java应用线程)也参与处理(关于标记部分网上由许多文章讲的比较详细,笔者在这里就不过多阐述)。我们接着写屏障的源码继续看:

JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
  //获取java线程中的dcq将卡页入列
  //enqueue入列方法最终会调用脏卡队列的父类PtrQueue的入列方法enqueue
  thread->dirty_card_queue().enqueue(card_addr);
JRT_END

//脏卡队列类:DirtyCardQueue 继承 PtrQueue
//脏卡队列集合:DirtyCardQueueSet 继承 PtrQueueSet
//PtrQueue的入列方法
void enqueue(void* ptr) {
  if (!_active) return;
  //我们直接看这个方法
  else enqueue_known_active(ptr);
}
//PtrQueue(DirtyCardQueue)内部有个_buf可以理解为时一个数组,默认容量是256
void PtrQueue::enqueue_known_active(void* ptr) {
  //_index是下标,与一般下标不一样的是只有初始化和_buf满时_index会为0
  while (_index == 0) {
    //这个方法只有在初始化和扩容的时候会进入
    handle_zero_index();
  }
  //每入列一个元素_index会减少
  _index -= oopSize;
  _buf[byte_index_to_index((int)_index)] = ptr;
}
//我们看下handle_zero_index()方法
void PtrQueue::handle_zero_index() {
  //判断是初始化还是扩容为null则为初始化
  //true为扩容
  if (_buf != NULL) {
    ......
    //判断是否有锁,这里只有shared dirty card queue会是true,因为shared_dirty_card_queue可能会有
    //多个线程操作,关于shared dirty card queue笔者在讲youngGC的文章中有介绍,这里就不再阐述
    if (_lock) {
      void** buf = _buf;   // local pointer to completed buffer
      _buf = NULL;         // clear shared _buf field
      locking_enqueue_completed_buffer(buf);  // enqueue completed buffer
      if (_buf != NULL) return;
    } else {
      //我们来看这里,写屏障会调用这个方法
      if (qset()->process_or_enqueue_complete_buffer(_buf)) {
        _sz = qset()->buffer_size();
        _index = _sz;
        return;
      }
    }
  }
  //初始化queue申请_buf,修改_index
  _buf = qset()->allocate_buffer();
  _sz = qset()->buffer_size();
  _index = _sz;

}
//这里会调用PtrQueueSet的方法
//每个java线程都有自己的DirtyCardQueue(PtrQueue)
//所有的DirtyCardQueue都关联一个全局DirtyCardQueueSet(PtrQueueSet)
bool PtrQueueSet::process_or_enqueue_complete_buffer(void** buf) {
  //判断是否是java线程
  if (Thread::current()->is_Java_thread()) {
    //如果是java线程判断是否到达红标记(_max_completed_queue即red标记,在DirtyCardQueueSet初始化时会传入)
    if (_max_completed_queue == 0 || _max_completed_queue > 0 &&
        _n_completed_buffers >= _max_completed_queue + _completed_queue_padding) {
      //达到红标记则自己处理
      bool b = mut_process_buffer(buf);
      if (b) {
        return true;
      }
    }
  }
  //这个方法最后会将满的_buf加入DirtyCardQueueSet,自己再重新申请一个buf
  enqueue_complete_buffer(buf);
  return false;
}

这里我们稍微解释下DirtyCardQueue和DirtyCardQueueSet,每个java线程都有一个私有的DirtyCardQueue(PtrQueue),所有的DirtyCardQueue都关联一个全局DirtyCardQueueSet(PtrQueueSet),每个DirtyCardQueue默认大小为256,当一个DirtyCardQueue满了之后会将其中满的数组(_buf)添加到DirtyCardQueueSet中,并为DirtyCardQueue重新申请一个新的数组(_buf),关于这方面的知识笔者在之前将youngGC的文章也有过介绍,有兴趣的读者也可以看下。

其实Mutator线程(java应用线程)和Refine线程处理脏卡队列的最终方法都是一样的,只不过调用过程不一样,我们继续看下Mutator线程(java应用线程):

bool DirtyCardQueueSet::mut_process_buffer(void** buf) {
  bool already_claimed = false;
  //获取当前java线程
  JavaThread* thread = JavaThread::current();
  //获取线程的par_id
  int worker_i = thread->get_claimed_par_id();
  //如果worker_i不为-1就证明线程已经申请过par_id
  if (worker_i != -1) {
    already_claimed = true;
  } else {
    //否则重新获取个par_id
    worker_i = _free_ids->claim_par_id();
    //存储par_id
    thread->set_claimed_par_id(worker_i);
  }

  bool b = false;
  if (worker_i != -1) {
    //这是处理脏卡队列的核心方法
    //_closure参数是一个迭代器RefineCardTableEntryClosure
    //buf是之前传入的脏卡队列中的数组
    b = DirtyCardQueue::apply_closure_to_buffer(_closure, buf, 0,
                                                _sz, true, worker_i);
    if (b) Atomic::inc(&_processed_buffers_mut);
    //如果是本次调用申请的par_id则要归还
    if (!already_claimed) {
      // 归还par_id
      _free_ids->release_par_id(worker_i);
      //同时将线程par_id设置为-1
      thread->set_claimed_par_id(-1);
    }
  }
  Java知识库 最新文章
计算距离春节还有多长时间
系统开发系列 之WebService(spring框架+ma
springBoot+Cache(自定义有效时间配置)
SpringBoot整合mybatis实现增删改查、分页查
spring教程
SpringBoot+Vue实现美食交流网站的设计与实
虚拟机内存结构以及虚拟机中销毁和新建对象
SpringMVC---原理
小李同学: Java如何按多个字段分组
打印票据--java
上一篇文章      下一篇文章      查看所有文章
加:2021-08-03 11:01:36  更:2021-08-03 11:04:45 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/29 7:39:22-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码