Java 8 提供的Lambda+Stream流让人感受到了什么叫函数式编程的快乐!
这里目前只讲Stream流,那什么是Stream流呢?
Stream 将要处理的元素集合看作一种流,在流的过程中,借助Stream API 对流中的元素进行操作,比如:筛选、排序、聚合等。
我们来对Stream流的功能做下区分:
1:循环和匹配(foreach/find/match):
package com.company.Test;
import java.util.Arrays;
import java.util.List;
import java.util.Optional;
public class DebugTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);
// 遍历出所有元素
list.stream().forEach(System.out::println);
// 匹配第一个元素
Optional<Integer> findFirst = list.stream().findFirst();
// 是否包含符合特定条件的元素
boolean anyMatch = list.stream().anyMatch(x -> x < 6);
System.out.println("匹配第一个值:" + findFirst.get());
System.out.println("是否存在大于6的值:" + anyMatch);
}
}
结果:
?7 6 9 3 8 2 1 匹配第一个值:7 是否存在大于6的值:true
筛选(filter)
筛选就是设置条件挑选出自己想要的元素。
案列一:简单整数集合筛选
package com.company.Test;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
Stream<Integer> stream = list.stream();
stream.filter(x -> x > 7).forEach(System.out::println);
}
}
结果:
8 9
案列二:针对对象属性进行筛选
package com.company.Test;
import com.company.pojo.Person;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
personList.add(new Person("Owen", 9500, 25, "male", "New York"));
personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
List<Person> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).collect(Collectors.toList());
System.out.println("高于8000的员工姓名:" );
fiterList.stream().forEach(x->{
System.out.println(x.getName());
});
}
}
结果:
高于8000的员工姓名: Tom Anni Owen
聚合(max/min/count)
个人理解就是用来计算的
案列一:算出最长的那个字段
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");
Optional<String> max = list.stream().max(Comparator.comparing(String::length));
System.out.println("最长的字符串:" + max.get());
}
}
结果:
最长的字符串:weoujgsd
案列二:获取Integer 集合中的最大值。
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);
// 自然排序
Optional<Integer> max = list.stream().max(Integer::compareTo);
// 自定义排序
Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o1.compareTo(o2);
}
});
System.out.println("自然排序的最大值:" + max.get());
System.out.println("自定义排序的最大值:" + max2.get());
}
}
结果:
自然排序的最大值:11 自定义排序的最大值:11
案列三:从对象中取值进行判断
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
personList.add(new Person("Owen", 9500, 25, "male", "New York"));
personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
System.out.println("员工工资最大值:" + max.get().getSalary());
}
}
结果:
员工工资最大值:9500
案列四:计算Integer 集合中大于6的元素的个数
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);
long count = list.stream().filter(x -> x > 6).count();
System.out.println("list中大于6的元素个数:" + count);
}
}
结果:
list中大于6的元素个数:4
映射(map/flatMap)
map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
String[] strArr = { "abcd", "bcdd", "defde", "fTr" };
List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());
List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());
System.out.println("每个元素大写:" + strList);
System.out.println("每个元素+3:" + intListNew);
}
}
结果:
每个元素大写:[ABCD, BCDD, DEFDE, FTR] 每个元素+3:[4, 6, 8, 10, 12, 14]
案例二:将对象的属性全部增加1000。
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
personList.add(new Person("Owen", 9500, 25, "male", "New York"));
personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
// 不改变原来员工集合的方式
List<Person> personListNew = personList.stream().map(person -> {
Person personNew = new Person(person.getName(), 0, 0, null, null);
personNew.setSalary(person.getSalary() + 10000);
return personNew;
}).collect(Collectors.toList());
System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());
// 改变原来员工集合的方式
List<Person> personListNew2 = personList.stream().map(person -> {
person.setSalary(person.getSalary() + 10000);
return person;
}).collect(Collectors.toList());
System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());
}
}
案例三:将两个字符数组合并成一个新的字符数组
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
List<String> listNew = list.stream().flatMap(s -> {
// 将每个元素转换成一个stream
String[] split = s.split(",");
Stream<String> s2 = Arrays.stream(split);
return s2;
}).collect(Collectors.toList());
System.out.println("处理前的集合:" + list);
System.out.println("处理后的集合:" + listNew);
}
}
结果:
处理前的集合:[m,k,l,a, 1,3,5,7] 处理后的集合:[m, k, l, a, 1, 3, 5, 7]
归约(reduce)
归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作
案列一:求Integer 集合的元素之和、乘积和最大值
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
// 求和方式1
Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
// 求和方式2
Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
// 求和方式3 前面这个0是设置默认值,加了这个0后返回的类型就变了不在是Optional,而是Integer类型
Integer sum3 = list.stream().reduce(0, Integer::sum);
// 求乘积
Optional<Integer> product = list.stream().reduce((x, y) -> x * y);
// 求最大值方式1
Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
// 求最大值写法2
Integer max2 = list.stream().reduce(1, Integer::max);
System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
System.out.println("list求积:" + product.get());
System.out.println("list求和:" + max.get() + "," + max2);
}
}
结果:
list求和:29,29,29 list求积:2112 list求和:11,11
案列二:对象属性求和。
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
personList.add(new Person("Owen", 9500, 25, "male", "New York"));
personList.add(new Person("Alisa", 7900, 26, "female", "New York"));
// 求工资之和方式1:
Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
// 求工资之和方式2: 自己定义求和方法,(sum1, sum2) -> 0声明求和的类型这个求和的类型为Integer
Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), (sum1, sum2) -> 0);
// 求工资之和方式3:
Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);
// 求最高工资方式1:
Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),Integer::max);
// 求最高工资方式2:
Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
(max1, max2) -> max1 > max2 ? max1 : max2);
System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
System.out.println("最高工资:" + maxSalary + "," + maxSalary2);
}
}
结果:
工资之和:49300,49300,49300 最高工资:9500,9500
收集(collect)
把流组合成一个值或者一个集合
归集(toList/toSet/toMap)
案列:三种集合的生成
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
.collect(Collectors.toMap(Person::getName, p -> p));
System.out.println("toList:" + listNew);
System.out.println("toSet:" + set);
System.out.println("toMap:" + map);
}
}
结果:
toList:[6, 4, 6, 6, 20] toSet:[4, 20, 6] toMap:{Tom=com.company.pojo.Person@67b64c45, Anni=com.company.pojo.Person@4411d970}
?统计(count/averaging)
案列:求数量,求平均,求和,求最高,一次性统计其他值
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
// 求总数
Long count = personList.stream().collect(Collectors.counting());
// 求平均工资
Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
// 求最高工资
Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
// 求工资之和
Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
// 一次性统计所有信息
DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));
System.out.println("员工总数:" + count);
System.out.println("员工平均工资:" + average);
System.out.println("员工工资总和:" + sum);
System.out.println("员工工资所有统计:" + collect);
}
}
结果:
员工总数:3 员工平均工资:7900.0 员工工资总和:23700 员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000, min=7000.000000, average=7900.000000, max=8900.000000}
分组(partitioningBy/groupingBy)
- 分区:将
stream 按条件分为两个Map ,满足条件的和不满足条件的。 - 分组:将集合分为多个Map,类似于MySQL中的分组语句。
案列:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));
// 将员工按薪资是否高于8000分组
Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
// 将员工按性别分组
Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
// 将员工先按性别分组,再按地区分组
Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
System.out.println("员工按薪资是否大于8000分组情况:" + part);
System.out.println("员工按性别分组情况:" + group);
System.out.println("员工按性别、地区:" + group2);
}
}
结果
员工按薪资是否大于8000分组情况:{false=[com.company.pojo.Person@7e0ea639, com.company.pojo.Person@3d24753a, com.company.pojo.Person@59a6e353], true=[com.company.pojo.Person@7a0ac6e3, com.company.pojo.Person@71be98f5, com.company.pojo.Person@6fadae5d]} 员工按性别分组情况:{female=[com.company.pojo.Person@3d24753a, com.company.pojo.Person@71be98f5, com.company.pojo.Person@59a6e353], male=[com.company.pojo.Person@7a0ac6e3, com.company.pojo.Person@7e0ea639, com.company.pojo.Person@6fadae5d]} 员工按性别、地区:{female={New York=[com.company.pojo.Person@71be98f5, com.company.pojo.Person@59a6e353], Washington=[com.company.pojo.Person@3d24753a]}, male={New York=[com.company.pojo.Person@7a0ac6e3, com.company.pojo.Person@6fadae5d], Washington=[com.company.pojo.Person@7e0ea639]}} ?
?接合(joining)
joining 可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
System.out.println("所有员工的姓名:" + names);
List<String> list = Arrays.asList("A", "B", "C");
String string = list.stream().collect(Collectors.joining("-"));
System.out.println("拼接后的字符串:" + string);
}
}
结果:
所有员工的姓名:Tom,Jack,Lily 拼接后的字符串:A-B-C
归约(reducing)
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
// 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)
Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
System.out.println("员工扣税薪资总和:" + sum);
// stream的reduce
Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
System.out.println("员工薪资总和:" + sum2.get());
}
}
结果:
员工扣税薪资总和:8700 员工薪资总和:23700
?排序(sorted)
sorted,中间操作。有两种排序:
- sorted():自然排序,流中元素需实现Comparable接口
- sorted(Comparator com):Comparator排序器自定义排序
案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序?
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
personList.add(new Person("Lily", 8800, 26, "male", "New York"));
personList.add(new Person("Alisa", 9000, 26, "female", "New York"));
// 按工资升序排序(自然排序)
List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
.collect(Collectors.toList());
// 按工资倒序排序
List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
.map(Person::getName).collect(Collectors.toList());
// 先按工资再按年龄升序排序
List<String> newList3 = personList.stream()
.sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
.collect(Collectors.toList());
// 先按工资再按年龄自定义排序(降序)
List<String> newList4 = personList.stream().sorted((p1, p2) -> {
if (p1.getSalary() == p2.getSalary()) {
return p2.getAge() - p1.getAge();
} else {
return p2.getSalary() - p1.getSalary();
}
}).map(Person::getName).collect(Collectors.toList());
System.out.println("按工资升序排序:" + newList);
System.out.println("按工资降序排序:" + newList2);
System.out.println("先按工资再按年龄升序排序:" + newList3);
System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
}
}
结果
按工资升序排序:[Lily, Tom, Sherry, Jack, Alisa] 按工资降序排序:[Sherry, Jack, Alisa, Tom, Lily] 先按工资再按年龄升序排序:[Lily, Tom, Sherry, Jack, Alisa] 先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]
提取/组合
流也可以进行合并、去重、限制、跳过等操作。
package com.company.Test;
import com.company.pojo.Person;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class DebugTest {
public static void main(String[] args) {
String[] arr1 = { "a", "b", "c", "d" };
String[] arr2 = { "d", "e", "f", "g" };
Stream<String> stream1 = Stream.of(arr1);
Stream<String> stream2 = Stream.of(arr2);
// concat:合并两个流 distinct:去重
List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
// limit:限制从流中获得前n个数据
List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
// skip:跳过前n个数据
List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());
System.out.println("流合并:" + newList);
System.out.println("limit:" + collect);
System.out.println("skip:" + collect2);
}
}
结果:
流合并:[a, b, c, d, e, f, g] limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19] skip:[3, 5, 7, 9, 11]
|