CountDownLatch
在我们实际做开发的时候可能会遇到这样的需求,主线程需要等待所有子线程完成任务之后再执行操作,我们可以用join来实现这个功能,但是join不够灵活,主线程只能等子线程完全执行完毕才能从join返回,而不能在子线程某个位置就执行返回。 为了解决这个问题,JDK开发组提供了CountDownLatch这个类,这样的需求通过CountDownLatch来实现会更加优雅、灵活。
CountDownLatch的使用
public static final CountDownLatch countDownLatch = new CountDownLatch(2);
public static void main(String[] args) throws InterruptedException {
Thread threadOne = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("threadOne start");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("threadOne end");
countDownLatch.countDown();
}
});
Thread threadTwo = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("threadTwo start");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("threadTwo end");
countDownLatch.countDown();
}
});
threadOne.start();
threadTwo.start();
countDownLatch.await();
System.out.println("main end");
}
运行结果:
threadOne start
threadTwo start
threadOne end
threadTwo end
main end
原理解析
基于AQS
CountDownLatch有一个Sync静态内部类继承了AQS,我们调用CountDownLatch的构造函数的时候会生成这个Sync的一个实例对象,我们设置的参数count其实就是设置AQS的state属性。
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
// 执行CountDownLatch的await方法最后会跳转到这个方法,state为0返回1,不为0就返回-1。
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
// 执行CountDownLatch的countDown方法最终会跳转到这个方法,该方法通过CAS + 自旋的方式对count进行修改,如果cas成功并且state == 0,就会返回true。
protected boolean tryReleaseShared(int releases) {
for (;;) {
int c = getState();
// 如果修改之前的state已经为0了,直接返回,这里可以防止countDown方法一直调用,导致state变为负数,state最低为0。
if (c == 0)
return false;
int nextc = c-1;
// CAS修改state,让state减一,如果减完之后state为0,就返回true。
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}
await
调用await方法的线程,如果在CountDownLatch的count不为0的时候会阻塞,知道count为0的时候才会被唤醒。
public void await() throws InterruptedException {
// 调用AQS的acquireSharedInterruptibly方法
sync.acquireSharedInterruptibly(1);
}
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
// 调用Sync的tryAcquireShared方法,该方法根据state是否为0,会返回1,或者-1
// 返回1时,直接返回方法,执行任何操作
// 返回-1时,表示state不为0,那么就把当前线程加到AQS队列中,同时阻塞
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
countDown
调用countDown方法,CountDownLatch的count就会减一,当count为0的时候就会去唤醒所有调用了await阻塞的线程。
public void countDown() {
// 调用AQS的releaseShared方法
sync.releaseShared(1);
}
public final boolean releaseShared(int arg) {
// 调用Sync的tryReleaseShared方法,如果为true,表示最后一个线程调用countDown之后,count为0了,这时候要唤醒所有调用了await被阻塞的线程。
if (tryReleaseShared(arg)) {
// 唤醒队列中所有阻塞的线程
doReleaseShared();
return true;
}
return false;
}
private void doReleaseShared() {
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
// 设置waitStatus
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue;
// 唤醒线程
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue;
}
if (h == head)
break;
}
}
CountDownLatch的计数器是一次性的,也就是等到计数器值变为0后,再调用CountDownLatch的await和 countdown方法都会立刻返回。
CyclicBarrier
CyclicBarrier是回环屏障的意思,它可以让一组线程全部达到一个状态后再全部同时执行。之所以叫作屏障是因为线程调用await方法后就会被阻塞,这个阻塞点就称为屏障点,等所有线程都调用了await方法后,线程们就会冲破屏障,继续向下运行。同时CyclicBarrier的计数器是可以重置。
CyclicBarrier的使用
线程在调用了CyclicBarrier的await,如果当前没有足够的线程调用了await,就会阻塞直到有足够的线程调用了await才会返回,并且会重置计数器。
public static final CyclicBarrier cyclicBarrier = new CyclicBarrier(2);
public static void main(String[] args) throws InterruptedException {
Thread threadOne = new Thread(new Runnable() {
@Override
public void run() {
try {
System.out.println("threadOne step1");
cyclicBarrier.await();
System.out.println("threadOne step2");
cyclicBarrier.await();
System.out.println("threadOne step3");
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}
});
Thread threadTwo = new Thread(new Runnable() {
@Override
public void run() {
try {
System.out.println("threadTwo step1");
cyclicBarrier.await();
System.out.println("threadTwo step2");
cyclicBarrier.await();
System.out.println("threadTwo step3");
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}
});
threadOne.start();
threadTwo.start();
threadOne.join();
threadTwo.join();
System.out.println("main end");
}
运行结果如下:
threadOne step1
threadTwo step1
threadTwo step2
threadOne step2
threadOne step3
threadTwo step3
main end
CyclicBarrier的原理
基于锁的内部原理
CyclicBarrier有以下的属性,其内部原理是通过锁来完成的。
// 线程await的时候要获得这个锁才可以执行操作
private final ReentrantLock lock = new ReentrantLock();
// 线程await,如果没有足够的线程到达屏障就会通过Condition来阻塞
private final Condition trip = lock.newCondition();
// 初始化的时候parties和count是一样的,等count为0的时候,CyclicBarrier会利用parties来重置count(计数器)。
private final int parties;
// 计数器,每当有线程调用await的时候,count就会减一,当count为0的时候就会唤醒之前阻塞的线程。
private int count;
// 构造CyclicBarrier的时候可以传入一个barrierCommand,在count为0的时候就会调用里面的run方法。
private final Runnable barrierCommand;
// Generation里面有一个boolean类型的broke,broke为true的时候就可以中断CyclicBarrier。
private Generation generation = new Generation();
CyclicBarrier的构造函数
public CyclicBarrier(int parties) {
this(parties, null);
}
// parties和count是相等的
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
dowait
无论是await()还是await(long timeout, TimeUnit unit)最终都会调用到dowait方法。
public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe);
}
}
public int await(long timeout, TimeUnit unit)
throws InterruptedException,
BrokenBarrierException,
TimeoutException {
return dowait(true, unit.toNanos(timeout));
}
// 参数timed为false时,nacos就没用了
// 参数timed为true时,nacos是过期的时间
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
// 加锁
lock.lock();
try {
// 判断Generation的broke是否为true,如果是true就抛出异常
final Generation g = generation;
if (g.broken)
throw new BrokenBarrierException();
// 判断线程是否中断
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
// count减一
int index = --count;
// 如果count为0,会执行下面的逻辑
if (index == 0) {
boolean ranAction = false;
try {
// 调用barrierCommand的run方法,这个是我们在构造函数中传入的
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
// 这里面会唤醒所有阻塞的线程,同时重置计数器
nextGeneration();
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// 减完之后,count不为0就会执行下面的逻辑
for (;;) {
try {
// 如果不是带超时时间的就直接用condition的await阻塞
if (!timed)
trip.await();
else if (nanos > 0L)
// 带超时时间的用condition的awaitNanos阻塞
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
Thread.currentThread().interrupt();
}
}
if (g.broken)
throw new BrokenBarrierException();
if (g != generation)
return index;
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
private void nextGeneration() {
// 唤醒所有通过Condition阻塞的线程
trip.signalAll();
// 重置计数器
count = parties;
generation = new Generation();
}
Semaphore
Semaphore是线程同步的辅助类,可以控制当前访问自身的线程个数,并提供了同步机制。使用Semaphore可以控制同时访问资源的线程个数,例如通过 Semaphore 限流。
Semaphore的使用
private final static int POOL_SIZE = 10;
private final Semaphore useful,useless;//useful表示可用的数据库连接,useless表示已用的数据库连接
public DBPoolSemaphore() {
this. useful = new Semaphore(POOL_SIZE);
this.useless = new Semaphore(0);
}
//存放数据库连接的容器
private static LinkedList<Connection> pool = new LinkedList<Connection>();
//初始化池
static {
for (int i = 0; i < POOL_SIZE; i++) {
pool.addLast(SqlConnectImpl.fetchConnection());
}
}
/*归还连接*/
public void returnConnect(Connection connection) throws InterruptedException {
if(connection!=null) {
System.out.println("当前有"+useful.getQueueLength()+"个线程等待数据库连接!!"
+"可用连接数:"+useful.availablePermits());
useless.acquire();
synchronized (pool) {
pool.addLast(connection);
}
useful.release();
}
}
/*从池子拿连接*/
public Connection takeConnect() throws InterruptedException {
useful.acquire();
Connection conn;
synchronized (pool) {
conn = pool.removeFirst();
}
useless.release();
return conn;
}
|