介绍
程序(program) 是为完成特定任务、用某种语言编写的一组指令的集合。即指一段静态的代码,静态对象。
进程(process) 是程序的一次执行过程,或是正在运行的一个程序。是一个动态的过程:有它自身的产生、存在和消亡的过程。——生命周期
如:运行中的QQ,运行中的MP3播放器
程序是静态的,进程是动态的
进程作为资源分配的单位,系统在运行时会为每个进程分配不同的内存区域
线程(thread),进程可进一步细化为线程,是一个程序内部的一条执行路径。若一个进程同一时间并行执行多个线程,就是支持多线程的线程作为调度和执行的单位,每个线程拥有独立的运行栈和程序计数器(pc),线程切换的开销小;最新面试资料宝典
一个进程中的多个线程共享相同的内存单元/内存地址空间→它们从同一堆中分配对象,可以访问相同的变量和对象。这就使得线程间通信更简便、高效。但多个线程操作共享的系统资源可能就会带来安全的隐患。
为什么需要多线程
众所周知,CPU、内存、I/O 设备的速度是有极大差异的,为了合理利用 CPU 的高性能,平衡这三者的速度差异,计算机体系结构、操作系统、编译程序都做出了贡献。
线程状态转换
新建(New)
创建后尚未启动。
就绪(Runnable)
可能正在运行,也可能正在等待 CPU 时间片。
包含了操作系统线程状态中的 Running 和 Ready。
阻塞(Blocking)
等待获取一个排它锁,如果其线程释放了锁就会结束此状态。
无限期等待(Waiting)
等待其它线程显式地唤醒,否则不会被分配 CPU 时间片。
限期等待(Timed Waiting)
无需等待其它线程显式地唤醒,在一定时间之后会被系统自动唤醒。
调用 Thread.sleep() 方法使线程进入限期等待状态时,常常用“使一个线程睡眠”进行描述。
调用 Object.wait() 方法使线程进入限期等待或者无限期等待时,常常用“挂起一个线程”进行描述。
睡眠和挂起是用来描述行为,而阻塞和等待用来描述状态。
阻塞和等待的区别在于,阻塞是被动的,它是在等待获取一个排它锁。而等待是主动的,通过调用 Thread.sleep() 和 Object.wait() 等方法进入。
死亡(Terminated)
可以是线程结束任务之后自己结束,或者产生了异常而结束。
线程使用方式
有三种使用线程的方法:最新面试资料宝典
- 实现 Runnable 接口;
- 实现 Callable 接口;
- 继承 Thread 类。
实现 Runnable 和 Callable 接口的类只能当做一个可以在线程中运行的任务,不是真正意义上的线程,因此最后还需要通过 Thread 来调用。可以说任务是通过线程驱动从而执行的。
继承 Thread 类
public class ThreadTest {
public static void main(String[] args) {
MyThread t1 = new MyThread();
t1.start();
for (int i=0;i<1000;i++){
if (i%2!=0){
System.out.println(i+"****");
}
}
}
}
class MyThread extends Thread{
@Override
public void run() {
for (int i=0;i<1000;i++){
if (i%2==0){
System.out.println(i);
}
}
}
}
public static void main(String[] args) {
MyThread1 myThread1 = new MyThread1();
myThread1.start();
MyThread2 myThread2 = new MyThread2();
myThread2.start();
new Thread(){
@Override
public void run() {
for (int i=0;i<1000;i++){
if (i%3==0){
System.out.println(Thread.currentThread().getName()+"***"+i);
}
}
}
}.start();
}
}
class MyThread1 extends Thread{
@Override
public void run() {
for (int i=0;i<100;i++){
if (i%2!=0){
System.out.println(Thread.currentThread().getName()+"***"+i);
}
}
}
}
class MyThread2 extends Thread{
@Override
public void run() {
for (int i=0;i<100;i++){
if (i%2==0){
System.out.println(Thread.currentThread().getName()+"***"+i);
}
}
}
}
###实现 Runnable 接口
package com.atguigu.juc.runnable;
public class TestThread {
public static void main(String[] args) {
MyThread myThread = new MyThread();
Thread t1 = new Thread(myThread);
t1.start();
}
}
class MyThread implements Runnable{
@Override
public void run() {
for (int i=0;i<100;i++){
if (i%2==0){
System.out.println(i);
}
}
}
}
实现 Callable 接口
线程常见方法
package com.atguigu.juc.tset01;
public class MyThreatTest {
public static void main(String[] args) {
TestMyThread t1 = new TestMyThread();
t1.start();
new Thread(){
@Override
public void run(){
for (int i=0;i<100;i++){
if (i%2==0){
try {
sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "子线程" + i);
yield();
}
}
}
}.start();
for (int i=0;i<100;i++){
if (i%3==0){
System.out.println(Thread.currentThread().getName() + "main方法" + i);
}
if (i==20){
try {
t1.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
class TestMyThread extends Thread{
@Override
public void run(){
for (int i=0;i<100;i++){
if (i%5==0){
System.out.println(Thread.currentThread().getName() + "2222222222222子线程" + i);
}
}
}
}
synchronized锁机制
一把锁只能同时被一个线程获取,没有获得锁的线程只能等待; 每个实例都对应有自己的一把锁(this),不同实例之间互不影响;例外:锁对象是*.class以及synchronized修饰的是static方法的时候,所有对象公用同一把锁 synchronized修饰的方法,无论方法正常执行完毕还是抛出异常,都会释放锁 ##同步代码—Runnable接口方式
/**
*方式一:同步代码块
* synchronized(同步监视器){
* //需要被同步的代码
* }
* 说明:
* 1.操作共享数据的代码,即为需要被同步的代码
* 2.共享数据:多个线程共同操作的变量
* 3.同步监视器,俗称:锁。任何一个类的对象都可以作为索
* 4.在Java中,我们通过同步机制,来解决线程的安全问题。
* 补充:在实现Runnable接口创建多线程的方式中,我们可以考虑使用this充当同步监视器。
* 方式二:同步方法
* 如果操作共享数据的代码完整的声明在一个方法中,我们不妨将此方法声明同步的。
* 5.同步的方式,解决了线程的安全问题。---好处
* 操作同步代码时,只能有一个线程参与,其他线程等待。相当于是一个单线程的过程,效率低。
*/
public class WindowToRunnable {
public static void main(String[] args) {
Window2 window2 = new Window2();
Thread t1 = new Thread(window2);
Thread t2 = new Thread(window2);
Thread t3 = new Thread(window2);
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
class Window2 implements Runnable{
//这里不用加static,因为调用的对象只有一个
private int ticket=100;
@Override
public void run() {
while (true) {
synchronized (this.getClass()){
if (ticket > 0) {
// try {
// Thread.sleep(100);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
System.out.println(Thread.currentThread().getName() + "买票,票号:" + ticket);
ticket--;
}
}
}
}
}
同步方法–Runnable接口方法
package com.atguigu.juc.bookPage;
public class WindowExtSynn {
public static void main(String[] args) {
Window4 w1 = new Window4();
Window4 w2 = new Window4();
Window4 w3 = new Window4();
w1.setName("窗口1");
w2.setName("窗口2");
w3.setName("窗口3");
w1.start();
w2.start();
w3.start();
}
}
class Window4 extends Thread{
private static int ticket=100;
@Override
public void run() {
while (true){
show();
}
}
private static synchronized void show() {
if (ticket>0){
System.out.println(Thread.currentThread().getName()+":买票:票号为"+ticket);
ticket--;
}
}
}
##同步方法—继承方法
package com.atguigu.juc.bookPage;
public class WindowExtSynn {
public static void main(String[] args) {
Window4 w1 = new Window4();
Window4 w2 = new Window4();
Window4 w3 = new Window4();
w1.setName("窗口1");
w2.setName("窗口2");
w3.setName("窗口3");
w1.start();
w2.start();
w3.start();
}
}
class Window4 extends Thread{
private static int ticket=100;
@Override
public void run() {
while (true){
show();
}
}
private static synchronized void show() {
if (ticket>0){
System.out.println(Thread.currentThread().getName()+":买票:票号为"+ticket);
ticket--;
}
}
}
##死锁 示例:两个线程都拿到第一层锁的key,然后都需要第二层锁的key,但key在对方手中,而方法没有执行完,都不可能释放key,互相僵持。
import static java.lang.Thread.sleep;
public class TestSyn {
public static void main(String[] args) {
StringBuffer s1 = new StringBuffer();
StringBuffer s2 = new StringBuffer();
new Thread(){
@Override
public void run() {
synchronized (s1) {
s1.append("a");
s2.append("1");
try {
sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (s2) {
s1.append("b");
s2.append("2");
System.out.println(s1);
System.out.println(s2);
}
}
}
}.start();
new Thread(new Runnable() {
@Override
public void run() {
synchronized (s2) {
s1.append("c");
s2.append("3");
try {
sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (s1) {
s1.append("d");
s2.append("4");
System.out.println(s1);
System.out.println(s2);
}
}
}
}).start();
}
}
##Lock锁机制
import java.util.concurrent.locks.ReentrantLock;
public class LockTest {
public static void main(String[] args) {
Window6 window6 = new Window6();
Thread t1 = new Thread(window6);
Thread t2 = new Thread(window6);
Thread t3 = new Thread(window6);
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
class Window6 implements Runnable{
private int ticker=100;
private ReentrantLock lock=new ReentrantLock();
@Override
public void run() {
while (true){
lock.lock();
try {
if (ticker>0){
System.out.println(Thread.currentThread().getName()+"买票:票号:"+ticker);
ticker--;
}else {
break;
}
} finally {
lock.unlock();
}
}
}
}
银行有一个账户。 有两个储户分别向同一个账户存3000元,每次存1e00,存3次。每次存完打印账户余额。最新面试资料宝典
public class AccountTest {
public static void main(String[] args) {
Account account = new Account(0);
Customer c1 = new Customer(account);
Customer c2 = new Customer(account);
c1.setName("A");
c2.setName("B");
c1.start();
c2.start();
}
}
class Account{
private double balance;
public Account(double balance) {
this.balance = balance;
}
public synchronized void deposit(double amt){
if (amt>0){
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
balance+=amt;
System.out.println(Thread.currentThread().getName()+"存钱成功,余额为"+balance);
}
}
}
class Customer extends Thread{
private Account acc;
public Customer(Account acc){
this.acc=acc;
}
@Override
public void run() {
for (int i=0;i<30;i++){
acc.deposit(1000);
}
}
}
A存钱成功,余额为1000.0 B存钱成功,余额为2000.0 B存钱成功,余额为3000.0 B存钱成功,余额为4000.0 A存钱成功,余额为5000.0 A存钱成功,余额为6000.0
|