一、简要介绍
不论是计算属性,还是异步计算属性,都是依托于Vue3整体的响应式原理实现的。其核心依旧是ReacetEffect类。如果对响应式原理不清楚,建议先看响应式原理章节。计算属性和常规的动态响应区别在于它不会主动的去执行ReacteEffect所关联的回调方法,而是用一个标记来表示当前的值是否有改变,如果有改变,则重新调用回调方法获取,如果没改动,则直接获取上次计算的值。
二、计算属性核心源码
export type ComputedGetter<T> = (...args: any[]) => T
export type ComputedSetter<T> = (v: T) => void
export interface WritableComputedOptions<T> {
get: ComputedGetter<T>
set: ComputedSetter<T>
}
class ComputedRefImpl<T> {
public dep?: Dep = undefined
private _value!: T
private _dirty = true
public readonly effect: ReactiveEffect<T>
public readonly __v_isRef = true
public readonly [ReactiveFlags.IS_READONLY]: boolean
constructor(
getter: ComputedGetter<T>,
private readonly _setter: ComputedSetter<T>,
isReadonly: boolean
) {
this.effect = new ReactiveEffect(getter, () => {
if (!this._dirty) {
this._dirty = true
triggerRefValue(this)
}
})
this[ReactiveFlags.IS_READONLY] = isReadonly
}
get value() {
const self = toRaw(this)
trackRefValue(self)
if (self._dirty) {
self._dirty = false
self._value = self.effect.run()!
}
return self._value
}
set value(newValue: T) {
this._setter(newValue)
}
}
export function computed<T>(
getterOrOptions: ComputedGetter<T> | WritableComputedOptions<T>,
debugOptions?: DebuggerOptions
) {
let getter: ComputedGetter<T>
let setter: ComputedSetter<T>
const onlyGetter = isFunction(getterOrOptions)
if (onlyGetter) {
getter = getterOrOptions
setter = __DEV__
? () => {
console.warn('Write operation failed: computed value is readonly')
}
: NOOP
} else {
getter = getterOrOptions.get
setter = getterOrOptions.set
}
const cRef = new ComputedRefImpl(getter, setter, onlyGetter || !setter)
if (__DEV__ && debugOptions) {
cRef.effect.onTrack = debugOptions.onTrack
cRef.effect.onTrigger = debugOptions.onTrigger
}
return cRef as any
}
一个计算属性对象的生成都是通过computed方法生成的,这个方法其实就是接收一个get方法和一个set方法,并生成一个ComputedRefImpl类型的对象。ComputedRefImpl类的实现很简单,生成一个ReactiveEffect类型对象,并实现一个value属性的读写方法。在读的时候收集依赖,并判断是否重新计算。特殊的地方在于这个ReactiveEffect类型的对象接收了第二个参数。我们细看一下触发依赖更新的代码,如下:
export function triggerEffects(
dep: Dep | ReactiveEffect[],
debuggerEventExtraInfo?: DebuggerEventExtraInfo
) {
for (const effect of isArray(dep) ? dep : [...dep]) {
if (effect !== activeEffect || effect.allowRecurse) {
if (__DEV__ && effect.onTrigger) {
effect.onTrigger(extend({ effect }, debuggerEventExtraInfo))
}
if (effect.scheduler) {
effect.scheduler()
} else {
effect.run()
}
}
}
}
里面逻辑很简单,遍历依赖里面的ReactiveEffect类型对象,如果存在scheduler方法,就调用这个方法。我们在看ReactiveEffect类的定义,代码如下:
export class ReactiveEffect<T = any> {
active = true
deps: Dep[] = []
computed?: boolean
allowRecurse?: boolean
onStop?: () => void
onTrack?: (event: DebuggerEvent) => void
onTrigger?: (event: DebuggerEvent) => void
constructor(
public fn: () => T,
public scheduler: EffectScheduler | null = null,
scope?: EffectScope | null
) {
recordEffectScope(this, scope)
}
}
此时就可以发现,ComputedRefImpl类里面的effect对象接收的第二个参数就是scheduler方法,因此当有依赖的数据变更时,会执行这个方法,这个方法很好理解。就是改变标记,意味着下一次读取这个计算属性,你需要重新计算了,不能用之前的缓存值了。接着触发依赖更新,不用疑惑,因为这个计算属性本身也是响应式的,自身改变需要通知相应的依赖更新。至于这个判断,是百分之百为true的,因为触发依赖需要先添加依赖,而在get方法里面添加依赖会将其置为false。
三、异步计算属性核心源码
const tick = Promise.resolve()
const queue: any[] = []
let queued = false
const scheduler = (fn: any) => {
queue.push(fn)
if (!queued) {
queued = true
tick.then(flush)
}
}
const flush = () => {
for (let i = 0; i < queue.length; i++) {
queue[i]()
}
queue.length = 0
queued = false
}
class DeferredComputedRefImpl<T> {
public dep?: Dep = undefined
private _value!: T
private _dirty = true
public readonly effect: ReactiveEffect<T>
public readonly __v_isRef = true
public readonly [ReactiveFlags.IS_READONLY] = true
constructor(getter: ComputedGetter<T>) {
let compareTarget: any
let hasCompareTarget = false
let scheduled = false
this.effect = new ReactiveEffect(getter, (computedTrigger?: boolean) => {
if (this.dep) {
if (computedTrigger) {
compareTarget = this._value
hasCompareTarget = true
} else if (!scheduled) {
const valueToCompare = hasCompareTarget ? compareTarget : this._value
scheduled = true
hasCompareTarget = false
scheduler(() => {
if (this.effect.active && this._get() !== valueToCompare) {
triggerRefValue(this)
}
scheduled = false
})
}
for (const e of this.dep) {
if (e.computed) {
e.scheduler!(true )
}
}
}
this._dirty = true
})
this.effect.computed = true
}
private _get() {
if (this._dirty) {
this._dirty = false
return (this._value = this.effect.run()!)
}
return this._value
}
get value() {
trackRefValue(this)
return toRaw(this)._get()
}
}
export function deferredComputed<T>(getter: () => T): ComputedRef<T> {
return new DeferredComputedRefImpl(getter) as any
}
异步计算属性和计算属性结构几乎一致,最为主要的区别在于ReactiveEffect类型对象的第二个参数上的不同。这个方法当依赖的某个数据变更时调用,我们先不管第一个if判断,直接看else里面的内容,简单来说就是将一个方法放入异步执行队列里面,然后异步执行。因为当依赖数据变更时,_dirty属性被置为了true,所以这个二异步执行的方法会去计算最新的值并触发依赖更新。我们现在看if里面的内容,这个分支是通过下面代码进入的。
for (const e of this.dep) {
if (e.computed) {
e.scheduler!(true )
}
}
这儿的设计原理其实是因为当同步的获取异步计算属性时,会取到最新的值,当执行异步方法时,由于已经获取过一次数据,为了保证this._get() !== valueToCompare判断值是true,valueToCompare必须等于重新计算之前的值。可以通过以下示例解释:
const src = ref(0)
const c1 = deferredComputed(() => {
return src.value % 2
})
const c2 = deferredComputed(() => {
return c1.value + 1
})
effect(() => {
c2.value
})
src.value = 1
console.log(c2.value);
上述流程,当赋值src.value = 1时,c1执行回调,由于c2依赖c1的值,所以c2也会执行回调,这儿的回调都是指scheduler方法,_dirty属性会被置为true,所以在同步打印c2.value的值时,会去重新计算c2,此时c1的_dirty属性也被置为了true,所以c1的值也会重新计算,即同步打印的c2会取到最新的值。但需要注意的时,此时异步队列里面的方法还未执行。当同步代码执行完后,开始执行异步队列里面的方法,但执行到如下代码时:
if (this.effect.active && this._get() !== valueToCompare) {
triggerRefValue(this)
}
由于同步打印过c2.value的值,此时_get()方法会从缓存里面取值,如果valueToCompare不等于计算前的值,而直接等于this._value,则判断为false,不会触发下面的依赖更新方法。异步计算属性的核心思想,其实就只是把依赖更新的逻辑放入了异步队列,通过异步的形式执行,其主要逻辑和计算属性几乎一致,只在细节上略有不同。
|