结构化图表可视化 - FacetGrid()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set_style("ticks")
sns.set_context("paper")
import warnings
warnings.filterwarnings('ignore')
1、基本设置
绘制直方图1
tips = sns.load_dataset('tips')
g = sns.FacetGrid(tips, col='time', row='smoker')
g.map(plt.hist, 'total_bill', alpha=0.5, color='b', bins=10)

绘制直方图2
g = sns.FacetGrid(tips, col='day',
size=6,
aspect=0.5
)
g.map(plt.hist, 'total_bill', bins=10,
histtype='step',
color='r')

绘制散点图
g = sns.FacetGrid(tips, col='time', row='smoker' )
g.map(plt.scatter, 'total_bill','tip',
edgecolor='w', s=40, linewidth=1
)
g.add_legend()

基本设置 - 分类
g = sns.FacetGrid(tips, col='time', hue='smoker')
g.map(plt.scatter,
'total_bill', 'tip',
edgecolor='w', s=40, linewidth=1)
g.add_legend()

2、图表矩阵
attend = sns.load_dataset('attention')
g = sns.FacetGrid(attend, col='subject', col_wrap=5,
size=2.5
)
g.map(plt.plot, 'solutions', 'score',
marker='o', color='g', linewidth=2)
g.set(xlim=(0,4),
ylim=(0,10),
xticks=[0,1,2,3,4],
yticks=[0,2,4,6,8,10])

|