IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> Python中的scrapy下载并保存图片 -> 正文阅读

[Python知识库]Python中的scrapy下载并保存图片

? ? ? ? 在日常爬虫练习中,我们爬取到的数据需要进行保存操作,在scrapy中我们可以使用ImagesPipeline这个类来进行相关操作,这个类是scrapy已经封装好的了,我们直接拿来用即可。

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ?在使用ImagesPipeline下载图片数据时,我们需要对其中的三个管道类方法进行重写,其中? ? ? ? ?— get_media_request? ?是对图片地址发起请求

? ?— file path? ?是返回图片名称

? ?— item_completed? 返回item,将其返回给下一个即将被执行的管道类

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

? ? ? ? 那具体代码是什么样的呢,首先我们需要在pipelines.py文件中,导入ImagesPipeline类,然后重写上述所说的3个方法:

from scrapy.pipelines.images import ImagesPipeline
import  scrapy
import os


class ImgsPipLine(ImagesPipeline):
    def get_media_requests(self, item, info):
        yield scrapy.Request(url = item['img_src'],meta={'item':item})


    #返回图片名称即可
    def file_path(self, request, response=None, info=None):
        item = request.meta['item']
        print('########',item)
        filePath = item['img_name']
        return filePath

    def item_completed(self, results, item, info):
        return item

? ? ? ? 方法定义好后,我们需要在settings.py配置文件中进行设置,一个是指定图片保存的位置IMAGES_STORE = 'D:\\ImgPro',然后就是启用“ImgsPipLine”管道,

ITEM_PIPELINES = {
   'imgPro.pipelines.ImgsPipLine': 300,  #300代表优先级,数字越小优先级越高
}

? ? ? ? ?设置完成后,我们运行程序后就可以看到“D:\\ImgPro”下保存成功的图片。

? ? ? ? ? ??

完整代码如下:

spider文件代码:

# -*- coding: utf-8 -*-
import scrapy
from imgPro.items import ImgproItem



class ImgSpider(scrapy.Spider):
    name = 'img'
    allowed_domains = ['www.521609.com']
    start_urls = ['http://www.521609.com/daxuemeinv/']

    def parse(self, response):
        #解析图片地址和图片名称
        li_list = response.xpath('//div[@class="index_img list_center"]/ul/li')
        for li in li_list:
            item = ImgproItem()
            item['img_src'] = 'http://www.521609.com/'  + li.xpath('./a[1]/img/@src').extract_first()
            item['img_name'] = li.xpath('./a[1]/img/@alt').extract_first() + '.jpg'
            # print('***********')
            # print(item)
            yield item

items.py文件

import scrapy


class ImgproItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    img_src = scrapy.Field()
    img_name = scrapy.Field()

?pipelines.py文件

from scrapy.pipelines.images import ImagesPipeline
import  scrapy
import os
from  imgPro.settings import IMAGES_STORE as IMGS

class ImgsPipLine(ImagesPipeline):
    def get_media_requests(self, item, info):
        yield scrapy.Request(url = item['img_src'],meta={'item':item})


    #返回图片名称即可
    def file_path(self, request, response=None, info=None):
        item = request.meta['item']
        print('########',item)
        filePath = item['img_name']
        return filePath

    def item_completed(self, results, item, info):
        return item

?settings.py文件

import random
BOT_NAME = 'imgPro'

SPIDER_MODULES = ['imgPro.spiders']
NEWSPIDER_MODULE = 'imgPro.spiders'

IMAGES_STORE = 'D:\\ImgPro'   #文件保存路径
LOG_LEVEL = "WARNING"
ROBOTSTXT_OBEY = False
#设置user-agent
USER_AGENTS_LIST = [
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1",
        "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
    ]
USER_AGENT = random.choice(USER_AGENTS_LIST)
DEFAULT_REQUEST_HEADERS = {
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    'Accept-Language': 'en',
   # 'User-Agent':"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    'User-Agent':USER_AGENT
}

#启动pipeline管道
ITEM_PIPELINES = {
   'imgPro.pipelines.ImgsPipLine': 300,
}

? ? ? ? ?以上即是使用ImagesPipeline下载保存图片的方法,今天突生一个疑惑,爬虫爬的好,真的是牢饭吃的饱吗?还请各位大佬解答!

? ? ? ? ? ? ? ? ? ??

?

????????

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2021-07-22 14:07:30  更:2021-07-22 14:07:53 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/25 15:03:32-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计