IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> Python数据可视化工具matplotlib(六)-- 直方图、密度图、散点图、极坐标图、雷达图 -> 正文阅读

[Python知识库]Python数据可视化工具matplotlib(六)-- 直方图、密度图、散点图、极坐标图、雷达图

直方图、密度图

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

#plt.hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, 
#histtype='bar', align='mid', orientation='vertical',rwidth=None, log=False, color=None, label=None, 
#stacked=False, hold=None, data=None, **kwargs)

s = pd.Series(np.random.randn(1000))
s.hist(bins = 20,
       histtype = 'bar',
       align = 'mid',
       orientation = 'vertical',
       alpha=0.5,
       density=True)
# bin:箱子的宽度
# normed 标准化
# histtype 风格,bar,barstacked,step,stepfilled
# orientation 水平还是垂直{‘horizontal’, ‘vertical’}
# align : {‘left’, ‘mid’, ‘right’}, optional(对齐方式)

s.plot(kind='kde',style='k--')
# 密度图

在这里插入图片描述

堆叠直方图

plt.figure(num=1)
df = pd.DataFrame({'a': np.random.randn(1000) + 1, 'b': np.random.randn(1000),
                    'c': np.random.randn(1000) - 1, 'd': np.random.randn(1000)-2},
                   columns=['a', 'b', 'c','d'])
df.plot.hist(stacked=True,
             bins=20,
             colormap='Greens_r',
             alpha=0.5,
             grid=True)
# 使用DataFrame.plot.hist()和Series.plot.hist()方法绘制
# stacked:是否堆叠

df.hist(bins=50)
# 生成多个直方图

在这里插入图片描述

散点图 - plt.scatter()

# plt.scatter(x, y, s=20, c=None, marker='o', cmap=None, norm=None, vmin=None, vmax=None, 
# alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)

plt.figure(figsize=(8,6))
x = np.random.randn(1000)
y = np.random.randn(1000)
plt.scatter(x,y,marker='.',
           s = np.random.randn(1000)*100,
           cmap = 'Reds',
           c = y,
           alpha = 0.8,)
plt.grid()
# s:散点的大小
# c:散点的颜色
# vmin,vmax:亮度设置,标量
# cmap:colormap

在这里插入图片描述

散点矩阵 - pd.scatter_matrix()

# pd.scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, 
# grid=False, diagonal='hist', marker='.', density_kwds=None, hist_kwds=None, range_padding=0.05, **kwds)

df = pd.DataFrame(np.random.randn(100,4),columns = ['a','b','c','d'])
pd.plotting.scatter_matrix(df,figsize=(10,6),
                 marker = 'o',
                 diagonal='kde',
                 alpha = 0.5,
                 range_padding=0.1)
# diagonal:({‘hist’, ‘kde’}),必须且只能在{‘hist’, ‘kde’}中选择1个 → 每个指标的频率图
# range_padding:(float, 可选),图像在x轴、y轴原点附近的留白(padding),该值越大,留白距离越大,图像远离坐标原点

在这里插入图片描述

极坐标图

#调用subplot()创建子图时通过设置projection='polar',便可创建一个极坐标子图,然后调用plot()在极坐标子图中绘图

# 创建极坐标轴

s = pd.Series(np.arange(20))
theta=np.arange(0,2*np.pi,0.02)
print(s.head())
print(theta[:10])
# 创建数据

fig = plt.figure(figsize=(10,6))
ax1 = plt.subplot(121, projection = 'polar')
ax2 = plt.subplot(122)
# 创建极坐标子图
# 还可以写:ax = fig.add_subplot(111,polar=True)

ax1.plot(theta,theta*3,linestyle = '--',lw=1)  
ax1.plot(s, linestyle = '--', marker = '.',lw=2)
ax2.plot(theta,theta*3,linestyle = '--',lw=1)
ax2.plot(s)
plt.grid()
# 创建极坐标图,参数1为角度(弧度制),参数2为value
# lw → 线宽
 

在这里插入图片描述

极坐标参数设置

theta=np.arange(0,2*np.pi,0.02)
plt.figure(figsize=(10,6))
ax1= plt.subplot(121, projection='polar')
ax2= plt.subplot(122, projection='polar')
ax1.plot(theta,theta/6,'--',lw=2)
ax2.plot(theta,theta/6,'--',lw=2)
# 创建极坐标子图ax

ax2.set_theta_direction(-1)
# set_theta_direction():坐标轴正方向,默认逆时针

ax2.set_thetagrids(np.arange(0.0, 360.0, 90),['a','b','c','d'])
ax2.set_rgrids(np.arange(0.2,2,0.4))
# set_thetagrids():设置极坐标角度网格线显示及标签 → 网格和标签数量一致
# set_rgrids():设置极径网格线显示,其中参数必须是正数

ax2.set_theta_offset(np.pi/2)
# set_theta_offset():设置角度偏移,逆时针,弧度制

ax2.set_rlim(0.2,1.2)
ax2.set_rmax(2)
ax2.set_rticks(np.arange(0.1, 1.5, 0.2))
# set_rlim():设置显示的极径范围
# set_rmax():设置显示的极径最大值
# set_rticks():设置极径网格线的显示范围

在这里插入图片描述

雷达图1 - 极坐标的折线图/填图 - plt.plot()

plt.figure(figsize=(10,6))

ax1= plt.subplot(111, projection='polar')
ax1.set_title('radar map\n')  # 创建标题
ax1.set_rlim(0,12)

data1 = np.random.randint(1,10,10)
data2 = np.random.randint(1,10,10)
data3 = np.random.randint(1,10,10)
theta=np.arange(0,2*np.pi,2*np.pi/10)
# 创建数据

ax1.plot(theta,data1,'.--',label='data1')
ax1.fill(theta,data1,alpha=0.2)
ax1.plot(theta,data2,'.--',label='data2')
ax1.fill(theta,data2,alpha=0.2)
ax1.plot(theta,data3,'.--',label='data3')
ax1.fill(theta,data3,alpha=0.2)
# 绘制雷达线

在这里插入图片描述

雷达图2 - 极坐标的折线图/填图 - plt.polar()

# 首尾闭合

labels = np.array(['a','b','c','d','e','f']) # 标签
dataLenth = 6 # 数据长度
data1 = np.random.randint(0,10,6) 
data2 = np.random.randint(0,10,6) # 数据

angles = np.linspace(0, 2*np.pi, dataLenth, endpoint=False) # 分割圆周长
data1 = np.concatenate((data1, [data1[0]])) # 闭合
data2 = np.concatenate((data2, [data2[0]])) # 闭合
angles = np.concatenate((angles, [angles[0]])) # 闭合

plt.polar(angles, data1, 'o-', linewidth=1) #做极坐标系
plt.fill(angles, data1, alpha=0.25)# 填充
plt.polar(angles, data2, 'o-', linewidth=1) #做极坐标系
plt.fill(angles, data2, alpha=0.25)# 填充

plt.thetagrids(angles * 180/np.pi, labels) # 设置网格、标签
plt.ylim(0,10)  # polar的极值设置为ylim

在这里插入图片描述

极轴图 - 极坐标的柱状图

plt.figure(figsize=(10,6))

ax1= plt.subplot(111, projection='polar')
ax1.set_title('radar map\n')  # 创建标题
ax1.set_rlim(0,12)

data = np.random.randint(1,10,10)
theta=np.arange(0,2*np.pi,2*np.pi/10)
# 创建数据

bar = ax1.bar(theta,data,alpha=0.5)
for r,bar in zip(data, bar):
    bar.set_facecolor(plt.cm.jet(r/10.))  # 设置颜色
plt.thetagrids(np.arange(0.0, 360.0, 90), []) # 设置网格、标签(这里是空标签,则不显示内容)

在这里插入图片描述

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2021-07-22 22:58:57  更:2021-07-22 22:59:09 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/25 15:01:00-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计