数据分析 Chapter 3
提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
第三章 模型搭建和评估
提示:前期数据集加载
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from IPython.display import Image
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['figure.figsize'] = (10, 6)
train = pd.read_csv('train.csv')
train.shape
提示:以下是本篇文章正文内容,下面案例可供参考
一、建模
在选择模型前,需要先知道数据集是监督学习还是无监督学习 模型的选择一方面是通过我们的任务来决定的。 除了根据我们任务来选择模型外,还可以根据数据样本量以及特征的稀疏性来决定 刚开始我们总是先尝试使用一个基本的模型来作为其baseline,进而再训练其他模型做对比,最终选择泛化能力或性能比较好的模型
二、使用步骤
1.缺失值填充
针对分类变量中的缺失值:用最多类别的进行填充 针对连续变量缺失值:填充均值、中位数以及众数
# 对分类变量进行填充
train['Cabin'] = train['Cabin'].fillna('NA')
train['Embarked'] = train['Embarked'].fillna('S')
# 对连续变量进行填充
train['Age'] = train['Age'].fillna(train['Age'].mean())
# 检查缺失值比例
train.isnull().sum().sort_values(ascending=False)
2.对分类变量进行编码
代码如下(示例):
data = pd.read_csv(
'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())
该处使用的url网络请求的数据。
总结
提示:这里对文章进行总结: 例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
|