IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> Python编程技巧(七)—— 并发多线程 -> 正文阅读

[Python知识库]Python编程技巧(七)—— 并发多线程

并发,通过线程和任务之间互相切换的方式实现,但同一时刻,只允许有一个线程或任务执行。而并行,则是指多个进程同时执行。
并发通常用于 I/O 操作频繁的场景,而并行则适用于 CPU heavy 的场景。
例:

import concurrent.futures
import requests
import threading
import time

def download_one(url):
    resp = requests.get(url)
    print('Read {} from {}'.format(len(resp.content), url))

def download_all(sites):
    with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
        executor.map(download_one, sites)

def main():
    sites = [
        'https://en.wikipedia.org/wiki/Portal:Arts',
        'https://en.wikipedia.org/wiki/Portal:History',
        'https://en.wikipedia.org/wiki/Portal:Society',
        'https://en.wikipedia.org/wiki/Portal:Biography',
        'https://en.wikipedia.org/wiki/Portal:Mathematics',
        'https://en.wikipedia.org/wiki/Portal:Technology',
        'https://en.wikipedia.org/wiki/Portal:Geography',
        'https://en.wikipedia.org/wiki/Portal:Science',
        'https://en.wikipedia.org/wiki/Computer_science',
        'https://en.wikipedia.org/wiki/Python_(programming_language)',
        'https://en.wikipedia.org/wiki/Java_(programming_language)',
        'https://en.wikipedia.org/wiki/PHP',
        'https://en.wikipedia.org/wiki/Node.js',
        'https://en.wikipedia.org/wiki/The_C_Programming_Language',
        'https://en.wikipedia.org/wiki/Go_(programming_language)'
    ]
    start_time = time.perf_counter()
    download_all(sites)
    end_time = time.perf_counter()
    print('Download {} sites in {} seconds'.format(len(sites), end_time - start_time))

if __name__ == '__main__':
    main()

## 输出
Read 151021 from https://en.wikipedia.org/wiki/Portal:Mathematics
Read 129886 from https://en.wikipedia.org/wiki/Portal:Arts
Read 107637 from https://en.wikipedia.org/wiki/Portal:Biography
Read 224118 from https://en.wikipedia.org/wiki/Portal:Society
Read 184343 from https://en.wikipedia.org/wiki/Portal:History
Read 167923 from https://en.wikipedia.org/wiki/Portal:Geography
Read 157811 from https://en.wikipedia.org/wiki/Portal:Technology
Read 91533 from https://en.wikipedia.org/wiki/Portal:Science
Read 321352 from https://en.wikipedia.org/wiki/Computer_science
Read 391905 from https://en.wikipedia.org/wiki/Python_(programming_language)
Read 180298 from https://en.wikipedia.org/wiki/Node.js
Read 56765 from https://en.wikipedia.org/wiki/The_C_Programming_Language
Read 468461 from https://en.wikipedia.org/wiki/PHP
Read 321417 from https://en.wikipedia.org/wiki/Java_(programming_language)
Read 324039 from https://en.wikipedia.org/wiki/Go_(programming_language)
Download 15 sites in 0.19936635800002023 seconds

多线程版本和单线程版的主要区别在:

   with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
        executor.map(download_one, sites)

这里创建了一个线程池,总共有 5 个线程可以分配使用。executer.map() 与 Python 内置的 map() 函数类似,表示对 sites 中的每一个元素,并发地调用函数 download_one()。
并行:

with futures.ThreadPoolExecutor(workers) as executor
=>
with futures.ProcessPoolExecutor() as executor: 

函数 ProcessPoolExecutor() 表示创建进程池,使用多个进程并行的执行程序。不过,这里通常省略参数 workers,因为系统会自动返回 CPU 的数量作为可以调用的进程数。

Future

Python 中的 Futures 模块,位于 concurrent.futures 和 asyncio 中,它们都表示带有延迟的操作。
Futures 会将处于等待状态的操作包裹起来放到队列中,这些操作的状态随时可以查询,当然,它们的结果或是异常,也能够在操作完成后被获取。
通常来说,作为用户,我们不用考虑如何去创建 Futures,这些 Futures 底层都会帮我们处理好。我们要做的,实际上是去 schedule 这些 Futures 的执行。比如,Futures 中的 Executor 类,当执行 executor.submit(func) 时,它便会安排里面的 func() 函数执行,并返回创建好的 future 实例,以便之后查询调用。
Futures 中的方法 done(),表示相对应的操作是否完成——True 表示完成,False 表示没有完成。不过,要注意,done() 是 non-blocking 的,会立即返回结果。相对应的 add_done_callback(fn),则表示 Futures 完成后,相对应的参数函数 fn,会被通知并执行调用。
Futures 中还有一个重要的函数 result(),它表示当 future 完成后,返回其对应的结果或异常。而 as_completed(fs),则是针对给定的 future 迭代器 fs,在其完成后,返回完成后的迭代器。所以,上述例子也可以写成下面的形式:

import concurrent.futures
import requests
import time

def download_one(url):
    resp = requests.get(url)
    print('Read {} from {}'.format(len(resp.content), url))

def download_all(sites):
    with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
        to_do = []
        for site in sites:
            future = executor.submit(download_one, site)
            to_do.append(future)
            
        for future in concurrent.futures.as_completed(to_do):
            future.result()
def main():
    sites = [
        'https://en.wikipedia.org/wiki/Portal:Arts',
        'https://en.wikipedia.org/wiki/Portal:History',
        'https://en.wikipedia.org/wiki/Portal:Society',
        'https://en.wikipedia.org/wiki/Portal:Biography',
        'https://en.wikipedia.org/wiki/Portal:Mathematics',
        'https://en.wikipedia.org/wiki/Portal:Technology',
        'https://en.wikipedia.org/wiki/Portal:Geography',
        'https://en.wikipedia.org/wiki/Portal:Science',
        'https://en.wikipedia.org/wiki/Computer_science',
        'https://en.wikipedia.org/wiki/Python_(programming_language)',
        'https://en.wikipedia.org/wiki/Java_(programming_language)',
        'https://en.wikipedia.org/wiki/PHP',
        'https://en.wikipedia.org/wiki/Node.js',
        'https://en.wikipedia.org/wiki/The_C_Programming_Language',
        'https://en.wikipedia.org/wiki/Go_(programming_language)'
    ]
    start_time = time.perf_counter()
    download_all(sites)
    end_time = time.perf_counter()
    print('Download {} sites in {} seconds'.format(len(sites), end_time - start_time))

if __name__ == '__main__':
    main()

# 输出
Read 129886 from https://en.wikipedia.org/wiki/Portal:Arts
Read 107634 from https://en.wikipedia.org/wiki/Portal:Biography
Read 224118 from https://en.wikipedia.org/wiki/Portal:Society
Read 158984 from https://en.wikipedia.org/wiki/Portal:Mathematics
Read 184343 from https://en.wikipedia.org/wiki/Portal:History
Read 157949 from https://en.wikipedia.org/wiki/Portal:Technology
Read 167923 from https://en.wikipedia.org/wiki/Portal:Geography
Read 94228 from https://en.wikipedia.org/wiki/Portal:Science
Read 391905 from https://en.wikipedia.org/wiki/Python_(programming_language)
Read 321352 from https://en.wikipedia.org/wiki/Computer_science
Read 180298 from https://en.wikipedia.org/wiki/Node.js
Read 321417 from https://en.wikipedia.org/wiki/Java_(programming_language)
Read 468421 from https://en.wikipedia.org/wiki/PHP
Read 56765 from https://en.wikipedia.org/wiki/The_C_Programming_Language
Read 324039 from https://en.wikipedia.org/wiki/Go_(programming_language)
Download 15 sites in 0.21698231499976828 seconds

这里首先调用 executor.submit(),将下载每一个网站的内容都放进 future 队列 to_do,等待执行。然后是 as_completed() 函数,在 future 完成后,便输出结果。
不过,这里要注意,future 列表中每个 future 完成的顺序,和它在列表中的顺序并不一定完全一致。到底哪个先完成、哪个后完成,取决于系统的调度和每个 future 的执行时间。

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2021-07-27 16:10:51  更:2021-07-27 16:12:15 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/24 19:04:51-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码