点击这里去《Python自带的小demo(下)》!
①绘制一朵花:
""" turtle-example-suite:
tdemo_bytedesign.py
An example adapted from the example-suite
of PythonCard's turtle graphics.
It's based on an article in BYTE magazine
Problem Solving with Logo: Using Turtle
Graphics to Redraw a Design
November 1982, p. 118 - 134
-------------------------------------------
Due to the statement
t.delay(0)
in line 152, which sets the animation delay
to 0, this animation runs in "line per line"
mode as fast as possible.
"""
from turtle import Turtle, mainloop
from time import clock
class Designer(Turtle):
def design(self, homePos, scale):
self.up()
for i in range(5):
self.forward(64.65 * scale)
self.down()
self.wheel(self.position(), scale)
self.up()
self.backward(64.65 * scale)
self.right(72)
self.up()
self.goto(homePos)
self.right(36)
self.forward(24.5 * scale)
self.right(198)
self.down()
self.centerpiece(46 * scale, 143.4, scale)
self.getscreen().tracer(True)
def wheel(self, initpos, scale):
self.right(54)
for i in range(4):
self.pentpiece(initpos, scale)
self.down()
self.left(36)
for i in range(5):
self.tripiece(initpos, scale)
self.left(36)
for i in range(5):
self.down()
self.right(72)
self.forward(28 * scale)
self.up()
self.backward(28 * scale)
self.left(54)
self.getscreen().update()
def tripiece(self, initpos, scale):
oldh = self.heading()
self.down()
self.backward(2.5 * scale)
self.tripolyr(31.5 * scale, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.down()
self.backward(2.5 * scale)
self.tripolyl(31.5 * scale, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.left(72)
self.getscreen().update()
def pentpiece(self, initpos, scale):
oldh = self.heading()
self.up()
self.forward(29 * scale)
self.down()
for i in range(5):
self.forward(18 * scale)
self.right(72)
self.pentr(18 * scale, 75, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.forward(29 * scale)
self.down()
for i in range(5):
self.forward(18 * scale)
self.right(72)
self.pentl(18 * scale, 75, scale)
self.up()
self.goto(initpos)
self.setheading(oldh)
self.left(72)
self.getscreen().update()
def pentl(self, side, ang, scale):
if side < (2 * scale): return
self.forward(side)
self.left(ang)
self.pentl(side - (.38 * scale), ang, scale)
def pentr(self, side, ang, scale):
if side < (2 * scale): return
self.forward(side)
self.right(ang)
self.pentr(side - (.38 * scale), ang, scale)
def tripolyr(self, side, scale):
if side < (4 * scale): return
self.forward(side)
self.right(111)
self.forward(side / 1.78)
self.right(111)
self.forward(side / 1.3)
self.right(146)
self.tripolyr(side * .75, scale)
def tripolyl(self, side, scale):
if side < (4 * scale): return
self.forward(side)
self.left(111)
self.forward(side / 1.78)
self.left(111)
self.forward(side / 1.3)
self.left(146)
self.tripolyl(side * .75, scale)
def centerpiece(self, s, a, scale):
self.forward(s); self.left(a)
if s < (7.5 * scale):
return
self.centerpiece(s - (1.2 * scale), a, scale)
def main():
t = Designer()
t.speed(0)
t.hideturtle()
t.getscreen().delay(0)
t.getscreen().tracer(0)
at = clock()
t.design(t.position(), 2)
et = clock()
return "runtime: %.2f sec." % (et-at)
if __name__ == '__main__':
msg = main()
print(msg)
mainloop()
②绘制折线图:
from turtle import *
N = 80
def f(x):
return 3.9*x*(1-x)
def g(x):
return 3.9*(x-x**2)
def h(x):
return 3.9*x-3.9*x*x
def jumpto(x, y):
penup(); goto(x,y)
def line(x1, y1, x2, y2):
jumpto(x1, y1)
pendown()
goto(x2, y2)
def coosys():
line(-1, 0, N+1, 0)
line(0, -0.1, 0, 1.1)
def plot(fun, start, color):
pencolor(color)
x = start
jumpto(0, x)
pendown()
dot(5)
for i in range(N):
x=fun(x)
goto(i+1,x)
dot(5)
def main():
reset()
setworldcoordinates(-1.0,-0.1, N+1, 1.1)
speed(0)
hideturtle()
coosys()
plot(f, 0.35, "blue")
plot(g, 0.35, "green")
plot(h, 0.35, "red")
for s in range(100):
setworldcoordinates(0.5*s,-0.1, N+1, 1.1)
return "Done!"
if __name__ == "__main__":
main()
mainloop()
③时钟:
""" turtle-example-suite:
tdemo_clock.py
Enhanced clock-program, showing date
and time
------------------------------------
Press STOP to exit the program!
------------------------------------
"""
from turtle import *
from datetime import datetime
def jump(distanz, winkel=0):
penup()
right(winkel)
forward(distanz)
left(winkel)
pendown()
def hand(laenge, spitze):
fd(laenge*1.15)
rt(90)
fd(spitze/2.0)
lt(120)
fd(spitze)
lt(120)
fd(spitze)
lt(120)
fd(spitze/2.0)
def make_hand_shape(name, laenge, spitze):
reset()
jump(-laenge*0.15)
begin_poly()
hand(laenge, spitze)
end_poly()
hand_form = get_poly()
register_shape(name, hand_form)
def clockface(radius):
reset()
pensize(7)
for i in range(60):
jump(radius)
if i % 5 == 0:
fd(25)
jump(-radius-25)
else:
dot(3)
jump(-radius)
rt(6)
def setup():
global second_hand, minute_hand, hour_hand, writer
mode("logo")
make_hand_shape("second_hand", 125, 25)
make_hand_shape("minute_hand", 130, 25)
make_hand_shape("hour_hand", 90, 25)
clockface(160)
second_hand = Turtle()
second_hand.shape("second_hand")
second_hand.color("gray20", "gray80")
minute_hand = Turtle()
minute_hand.shape("minute_hand")
minute_hand.color("blue1", "red1")
hour_hand = Turtle()
hour_hand.shape("hour_hand")
hour_hand.color("blue3", "red3")
for hand in second_hand, minute_hand, hour_hand:
hand.resizemode("user")
hand.shapesize(1, 1, 3)
hand.speed(0)
ht()
writer = Turtle()
writer.ht()
writer.pu()
writer.bk(85)
def wochentag(t):
wochentag = ["Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday"]
return wochentag[t.weekday()]
def datum(z):
monat = ["Jan.", "Feb.", "Mar.", "Apr.", "May", "June",
"July", "Aug.", "Sep.", "Oct.", "Nov.", "Dec."]
j = z.year
m = monat[z.month - 1]
t = z.day
return "%s %d %d" % (m, t, j)
def tick():
t = datetime.today()
sekunde = t.second + t.microsecond*0.000001
minute = t.minute + sekunde/60.0
stunde = t.hour + minute/60.0
try:
tracer(False)
writer.clear()
writer.home()
writer.forward(65)
writer.write(wochentag(t),
align="center", font=("Courier", 14, "bold"))
writer.back(150)
writer.write(datum(t),
align="center", font=("Courier", 14, "bold"))
writer.forward(85)
tracer(True)
second_hand.setheading(6*sekunde)
minute_hand.setheading(6*minute)
hour_hand.setheading(30*stunde)
tracer(True)
ontimer(tick, 100)
except Terminator:
pass
def main():
tracer(False)
setup()
tracer(True)
tick()
return "EVENTLOOP"
if __name__ == "__main__":
mode("logo")
msg = main()
print(msg)
mainloop()
④颜色搭配:
from turtle import Screen, Turtle, mainloop
class ColorTurtle(Turtle):
def __init__(self, x, y):
Turtle.__init__(self)
self.shape("turtle")
self.resizemode("user")
self.shapesize(3,3,5)
self.pensize(10)
self._color = [0,0,0]
self.x = x
self._color[x] = y
self.color(self._color)
self.speed(0)
self.left(90)
self.pu()
self.goto(x,0)
self.pd()
self.sety(1)
self.pu()
self.sety(y)
self.pencolor("gray25")
self.ondrag(self.shift)
def shift(self, x, y):
self.sety(max(0,min(y,1)))
self._color[self.x] = self.ycor()
self.fillcolor(self._color)
setbgcolor()
def setbgcolor():
screen.bgcolor(red.ycor(), green.ycor(), blue.ycor())
def main():
global screen, red, green, blue
screen = Screen()
screen.delay(0)
screen.setworldcoordinates(-1, -0.3, 3, 1.3)
red = ColorTurtle(0, .5)
green = ColorTurtle(1, .5)
blue = ColorTurtle(2, .5)
setbgcolor()
writer = Turtle()
writer.ht()
writer.pu()
writer.goto(1,1.15)
writer.write("DRAG!",align="center",font=("Arial",30,("bold","italic")))
return "EVENTLOOP"
if __name__ == "__main__":
msg = main()
print(msg)
mainloop()
⑤绘制一片森林:
""" turtlegraphics-example-suite:
tdemo_forest.py
Displays a 'forest' of 3 breadth-first-trees
similar to the one in tree.
For further remarks see tree.py
This example is a 'breadth-first'-rewrite of
a Logo program written by Erich Neuwirth. See
http://homepage.univie.ac.at/erich.neuwirth/
"""
from turtle import Turtle, colormode, tracer, mainloop
from random import randrange
from time import clock
def symRandom(n):
return randrange(-n,n+1)
def randomize( branchlist, angledist, sizedist ):
return [ (angle+symRandom(angledist),
sizefactor*1.01**symRandom(sizedist))
for angle, sizefactor in branchlist ]
def randomfd( t, distance, parts, angledist ):
for i in range(parts):
t.left(symRandom(angledist))
t.forward( (1.0 * distance)/parts )
def tree(tlist, size, level, widthfactor, branchlists, angledist=10, sizedist=5):
if level > 0:
lst = []
brs = []
for t, branchlist in list(zip(tlist,branchlists)):
t.pensize( size * widthfactor )
t.pencolor( 255 - (180 - 11 * level + symRandom(15)),
180 - 11 * level + symRandom(15),
0 )
t.pendown()
randomfd(t, size, level, angledist )
yield 1
for angle, sizefactor in branchlist:
t.left(angle)
lst.append(t.clone())
brs.append(randomize(branchlist, angledist, sizedist))
t.right(angle)
for x in tree(lst, size*sizefactor, level-1, widthfactor, brs,
angledist, sizedist):
yield None
def start(t,x,y):
colormode(255)
t.reset()
t.speed(0)
t.hideturtle()
t.left(90)
t.penup()
t.setpos(x,y)
t.pendown()
def doit1(level, pen):
pen.hideturtle()
start(pen, 20, -208)
t = tree( [pen], 80, level, 0.1, [[ (45,0.69), (0,0.65), (-45,0.71) ]] )
return t
def doit2(level, pen):
pen.hideturtle()
start(pen, -135, -130)
t = tree( [pen], 120, level, 0.1, [[ (45,0.69), (-45,0.71) ]] )
return t
def doit3(level, pen):
pen.hideturtle()
start(pen, 190, -90)
t = tree( [pen], 100, level, 0.1, [[ (45,0.7), (0,0.72), (-45,0.65) ]] )
return t
def main():
p = Turtle()
p.ht()
tracer(75,0)
u = doit1(6, Turtle(undobuffersize=1))
s = doit2(7, Turtle(undobuffersize=1))
t = doit3(5, Turtle(undobuffersize=1))
a = clock()
while True:
done = 0
for b in u,s,t:
try:
b.__next__()
except:
done += 1
if done == 3:
break
tracer(1,10)
b = clock()
return "runtime: %.2f sec." % (b-a)
if __name__ == '__main__':
main()
mainloop()
⑥绘制两个图形:
""" turtle-example-suite:
tdemo_fractalCurves.py
This program draws two fractal-curve-designs:
(1) A hilbert curve (in a box)
(2) A combination of Koch-curves.
The CurvesTurtle class and the fractal-curve-
methods are taken from the PythonCard example
scripts for turtle-graphics.
"""
from turtle import *
from time import sleep, clock
class CurvesTurtle(Pen):
def hilbert(self, size, level, parity):
if level == 0:
return
self.left(parity * 90)
self.hilbert(size, level - 1, -parity)
self.forward(size)
self.right(parity * 90)
self.hilbert(size, level - 1, parity)
self.forward(size)
self.hilbert(size, level - 1, parity)
self.right(parity * 90)
self.forward(size)
self.hilbert(size, level - 1, -parity)
self.left(parity * 90)
def fractalgon(self, n, rad, lev, dir):
import math
edge = 2 * rad * math.sin(math.pi / n)
self.pu()
self.fd(rad)
self.pd()
self.rt(180 - (90 * (n - 2) / n))
for i in range(n):
self.fractal(edge, lev, dir)
self.rt(360 / n)
self.lt(180 - (90 * (n - 2) / n))
self.pu()
self.bk(rad)
self.pd()
def fractal(self, dist, depth, dir):
if depth < 1:
self.fd(dist)
return
self.fractal(dist / 3, depth - 1, dir)
self.lt(60 * dir)
self.fractal(dist / 3, depth - 1, dir)
self.rt(120 * dir)
self.fractal(dist / 3, depth - 1, dir)
self.lt(60 * dir)
self.fractal(dist / 3, depth - 1, dir)
def main():
ft = CurvesTurtle()
ft.reset()
ft.speed(0)
ft.ht()
ft.getscreen().tracer(1,0)
ft.pu()
size = 6
ft.setpos(-33*size, -32*size)
ft.pd()
ta=clock()
ft.fillcolor("red")
ft.begin_fill()
ft.fd(size)
ft.hilbert(size, 6, 1)
ft.fd(size)
for i in range(3):
ft.lt(90)
ft.fd(size*(64+i%2))
ft.pu()
for i in range(2):
ft.fd(size)
ft.rt(90)
ft.pd()
for i in range(4):
ft.fd(size*(66+i%2))
ft.rt(90)
ft.end_fill()
tb=clock()
res = "Hilbert: %.2fsec. " % (tb-ta)
sleep(3)
ft.reset()
ft.speed(0)
ft.ht()
ft.getscreen().tracer(1,0)
ta=clock()
ft.color("black", "blue")
ft.begin_fill()
ft.fractalgon(3, 250, 4, 1)
ft.end_fill()
ft.begin_fill()
ft.color("red")
ft.fractalgon(3, 200, 4, -1)
ft.end_fill()
tb=clock()
res += "Koch: %.2fsec." % (tb-ta)
return res
if __name__ == '__main__':
msg = main()
print(msg)
mainloop()
⑦绘制两个以美丽的线条组成的矩形:
""" turtle-example-suite:
xtx_lindenmayer_indian.py
Each morning women in Tamil Nadu, in southern
India, place designs, created by using rice
flour and known as kolam on the thresholds of
their homes.
These can be described by Lindenmayer systems,
which can easily be implemented with turtle
graphics and Python.
Two examples are shown here:
(1) the snake kolam
(2) anklets of Krishna
Taken from Marcia Ascher: Mathematics
Elsewhere, An Exploration of Ideas Across
Cultures
"""
from turtle import *
def replace( seq, replacementRules, n ):
for i in range(n):
newseq = ""
for element in seq:
newseq = newseq + replacementRules.get(element,element)
seq = newseq
return seq
def draw( commands, rules ):
for b in commands:
try:
rules[b]()
except TypeError:
try:
draw(rules[b], rules)
except:
pass
def main():
def r():
right(45)
def l():
left(45)
def f():
forward(7.5)
snake_rules = {"-":r, "+":l, "f":f, "b":"f+f+f--f--f+f+f"}
snake_replacementRules = {"b": "b+f+b--f--b+f+b"}
snake_start = "b--f--b--f"
drawing = replace(snake_start, snake_replacementRules, 3)
reset()
speed(3)
tracer(1,0)
ht()
up()
backward(195)
down()
draw(drawing, snake_rules)
from time import sleep
sleep(3)
def A():
color("red")
circle(10,90)
def B():
from math import sqrt
color("black")
l = 5/sqrt(2)
forward(l)
circle(l, 270)
forward(l)
def F():
color("green")
forward(10)
krishna_rules = {"a":A, "b":B, "f":F}
krishna_replacementRules = {"a" : "afbfa", "b" : "afbfbfbfa" }
krishna_start = "fbfbfbfb"
reset()
speed(0)
tracer(3,0)
ht()
left(45)
drawing = replace(krishna_start, krishna_replacementRules, 3)
draw(drawing, krishna_rules)
tracer(1)
return "Done!"
if __name__=='__main__':
msg = main()
print(msg)
mainloop()
⑧汉诺塔小游戏:
""" turtle-example-suite:
tdemo_minimal_hanoi.py
A minimal 'Towers of Hanoi' animation:
A tower of 6 discs is transferred from the
left to the right peg.
An imho quite elegant and concise
implementation using a tower class, which
is derived from the built-in type list.
Discs are turtles with shape "square", but
stretched to rectangles by shapesize()
---------------------------------------
To exit press STOP button
---------------------------------------
"""
from turtle import *
class Disc(Turtle):
def __init__(self, n):
Turtle.__init__(self, shape="square", visible=False)
self.pu()
self.shapesize(1.5, n*1.5, 2)
self.fillcolor(n/6., 0, 1-n/6.)
self.st()
class Tower(list):
"Hanoi tower, a subclass of built-in type list"
def __init__(self, x):
"create an empty tower. x is x-position of peg"
self.x = x
def push(self, d):
d.setx(self.x)
d.sety(-150+34*len(self))
self.append(d)
def pop(self):
d = list.pop(self)
d.sety(150)
return d
def hanoi(n, from_, with_, to_):
if n > 0:
hanoi(n-1, from_, to_, with_)
to_.push(from_.pop())
hanoi(n-1, with_, from_, to_)
def play():
onkey(None,"space")
clear()
try:
hanoi(6, t1, t2, t3)
write("press STOP button to exit",
align="center", font=("Courier", 16, "bold"))
except Terminator:
pass
def main():
global t1, t2, t3
ht(); penup(); goto(0, -225)
t1 = Tower(-250)
t2 = Tower(0)
t3 = Tower(250)
for i in range(6,0,-1):
t1.push(Disc(i))
write("press spacebar to start game",
align="center", font=("Courier", 16, "bold"))
onkey(play, "space")
listen()
return "EVENTLOOP"
if __name__=="__main__":
msg = main()
print(msg)
mainloop()
⑧矩形小游戏:
""" turtle-example-suite:
tdemo_nim.py
Play nim against the computer. The player
who takes the last stick is the winner.
Implements the model-view-controller
design pattern.
"""
import turtle
import random
import time
SCREENWIDTH = 640
SCREENHEIGHT = 480
MINSTICKS = 7
MAXSTICKS = 31
HUNIT = SCREENHEIGHT // 12
WUNIT = SCREENWIDTH // ((MAXSTICKS // 5) * 11 + (MAXSTICKS % 5) * 2)
SCOLOR = (63, 63, 31)
HCOLOR = (255, 204, 204)
COLOR = (204, 204, 255)
def randomrow():
return random.randint(MINSTICKS, MAXSTICKS)
def computerzug(state):
xored = state[0] ^ state[1] ^ state[2]
if xored == 0:
return randommove(state)
for z in range(3):
s = state[z] ^ xored
if s <= state[z]:
move = (z, s)
return move
def randommove(state):
m = max(state)
while True:
z = random.randint(0,2)
if state[z] > (m > 1):
break
rand = random.randint(m > 1, state[z]-1)
return z, rand
class NimModel(object):
def __init__(self, game):
self.game = game
def setup(self):
if self.game.state not in [Nim.CREATED, Nim.OVER]:
return
self.sticks = [randomrow(), randomrow(), randomrow()]
self.player = 0
self.winner = None
self.game.view.setup()
self.game.state = Nim.RUNNING
def move(self, row, col):
maxspalte = self.sticks[row]
self.sticks[row] = col
self.game.view.notify_move(row, col, maxspalte, self.player)
if self.game_over():
self.game.state = Nim.OVER
self.winner = self.player
self.game.view.notify_over()
elif self.player == 0:
self.player = 1
row, col = computerzug(self.sticks)
self.move(row, col)
self.player = 0
def game_over(self):
return self.sticks == [0, 0, 0]
def notify_move(self, row, col):
if self.sticks[row] <= col:
return
self.move(row, col)
class Stick(turtle.Turtle):
def __init__(self, row, col, game):
turtle.Turtle.__init__(self, visible=False)
self.row = row
self.col = col
self.game = game
x, y = self.coords(row, col)
self.shape("square")
self.shapesize(HUNIT/10.0, WUNIT/20.0)
self.speed(0)
self.pu()
self.goto(x,y)
self.color("white")
self.showturtle()
def coords(self, row, col):
packet, remainder = divmod(col, 5)
x = (3 + 11 * packet + 2 * remainder) * WUNIT
y = (2 + 3 * row) * HUNIT
return x - SCREENWIDTH // 2 + WUNIT // 2, SCREENHEIGHT // 2 - y - HUNIT // 2
def makemove(self, x, y):
if self.game.state != Nim.RUNNING:
return
self.game.controller.notify_move(self.row, self.col)
class NimView(object):
def __init__(self, game):
self.game = game
self.screen = game.screen
self.model = game.model
self.screen.colormode(255)
self.screen.tracer(False)
self.screen.bgcolor((240, 240, 255))
self.writer = turtle.Turtle(visible=False)
self.writer.pu()
self.writer.speed(0)
self.sticks = {}
for row in range(3):
for col in range(MAXSTICKS):
self.sticks[(row, col)] = Stick(row, col, game)
self.display("... a moment please ...")
self.screen.tracer(True)
def display(self, msg1, msg2=None):
self.screen.tracer(False)
self.writer.clear()
if msg2 is not None:
self.writer.goto(0, - SCREENHEIGHT // 2 + 48)
self.writer.pencolor("red")
self.writer.write(msg2, align="center", font=("Courier",18,"bold"))
self.writer.goto(0, - SCREENHEIGHT // 2 + 20)
self.writer.pencolor("black")
self.writer.write(msg1, align="center", font=("Courier",14,"bold"))
self.screen.tracer(True)
def setup(self):
self.screen.tracer(False)
for row in range(3):
for col in range(self.model.sticks[row]):
self.sticks[(row, col)].color(SCOLOR)
for row in range(3):
for col in range(self.model.sticks[row], MAXSTICKS):
self.sticks[(row, col)].color("white")
self.display("Your turn! Click leftmost stick to remove.")
self.screen.tracer(True)
def notify_move(self, row, col, maxspalte, player):
if player == 0:
farbe = HCOLOR
for s in range(col, maxspalte):
self.sticks[(row, s)].color(farbe)
else:
self.display(" ... thinking ... ")
time.sleep(0.5)
self.display(" ... thinking ... aaah ...")
farbe = COLOR
for s in range(maxspalte-1, col-1, -1):
time.sleep(0.2)
self.sticks[(row, s)].color(farbe)
self.display("Your turn! Click leftmost stick to remove.")
def notify_over(self):
if self.game.model.winner == 0:
msg2 = "Congrats. You're the winner!!!"
else:
msg2 = "Sorry, the computer is the winner."
self.display("To play again press space bar. To leave press ESC.", msg2)
def clear(self):
if self.game.state == Nim.OVER:
self.screen.clear()
class NimController(object):
def __init__(self, game):
self.game = game
self.sticks = game.view.sticks
self.BUSY = False
for stick in self.sticks.values():
stick.onclick(stick.makemove)
self.game.screen.onkey(self.game.model.setup, "space")
self.game.screen.onkey(self.game.view.clear, "Escape")
self.game.view.display("Press space bar to start game")
self.game.screen.listen()
def notify_move(self, row, col):
if self.BUSY:
return
self.BUSY = True
self.game.model.notify_move(row, col)
self.BUSY = False
class Nim(object):
CREATED = 0
RUNNING = 1
OVER = 2
def __init__(self, screen):
self.state = Nim.CREATED
self.screen = screen
self.model = NimModel(self)
self.view = NimView(self)
self.controller = NimController(self)
def main():
mainscreen = turtle.Screen()
mainscreen.mode("standard")
mainscreen.setup(SCREENWIDTH, SCREENHEIGHT)
nim = Nim(mainscreen)
return "EVENTLOOP"
if __name__ == "__main__":
main()
turtle.mainloop()
⑨跟着鼠标走的小红点:
""" turtle-example-suite:
tdemo_paint.py
A simple event-driven paint program
- left mouse button moves turtle
- middle mouse button changes color
- right mouse button toogles betweem pen up
(no line drawn when the turtle moves) and
pen down (line is drawn). If pen up follows
at least two pen-down moves, the polygon that
includes the starting point is filled.
-------------------------------------------
Play around by clicking into the canvas
using all three mouse buttons.
-------------------------------------------
To exit press STOP button
-------------------------------------------
"""
from turtle import *
def switchupdown(x=0, y=0):
if pen()["pendown"]:
end_fill()
up()
else:
down()
begin_fill()
def changecolor(x=0, y=0):
global colors
colors = colors[1:]+colors[:1]
color(colors[0])
def main():
global colors
shape("circle")
resizemode("user")
shapesize(.5)
width(3)
colors=["red", "green", "blue", "yellow"]
color(colors[0])
switchupdown()
onscreenclick(goto,1)
onscreenclick(changecolor,2)
onscreenclick(switchupdown,3)
return "EVENTLOOP"
if __name__ == "__main__":
msg = main()
print(msg)
mainloop()
|