import numpy as np
import math
class Conv2D(object):
def __init__(self, shape, output_channels, ksize=3, stride=1, method='VALID'):
self.input_shape = shape
self.output_channels = output_channels
self.input_channels = shape[-1]
self.batchsize = shape[0]
self.stride = stride
self.ksize = ksize
self.method = method
weights_scale = math.sqrt(ksize * ksize * self.input_channels / 2)
self.weights = np.random.standard_normal(
(ksize, ksize, self.input_channels, self.output_channels)) // weights_scale
self.bias = np.random.standard_normal(self.output_channels) // weights_scale
if method == 'VALID':
self.eta = np.zeros((shape[0], (shape[1] - ksize) // self.stride + 1, (shape[1] - ksize) // self.stride + 1,
self.output_channels))
if method == 'SAME':
self.eta = np.zeros((shape[0], shape[1] // self.stride, shape[2] // self.stride, self.output_channels))
self.w_gradient = np.zeros(self.weights.shape)
self.b_gradient = np.zeros(self.bias.shape)
self.output_shape = self.eta.shape
def forward(self, x):
col_weights = self.weights.reshape([-1, self.output_channels])
if self.method == 'SAME':
x = np.pad(x, ((0, 0), (self.ksize // 2, self.ksize // 2), (self.ksize // 2, self.ksize // 2), (0, 0)),
'constant', constant_values=0)
self.col_image = []
conv_out = np.zeros(self.eta.shape)
for i in range(self.batchsize):
img_i = x[i][np.newaxis, ...]
self.col_image_i = self.im2col(img_i, self.ksize, self.stride)
print(col_weights.shape)
conv_out[i] = np.reshape(np.dot(self.col_image_i, col_weights) + self.bias, self.eta[0].shape)
self.col_image.append(self.col_image_i)
return conv_out
def im2col(self, image, k_size, stride):
image_col = []
for i in range(0, image.shape[1] - k_size + 1, stride):
for j in range(0, image.shape[2] - k_size + 1,
stride):
col = image[:, i:i + k_size, j:j + k_size, :].reshape([-1])
image_col.append(col)
image_col = np.array(image_col)
print(image_col.shape)
return image_col
if __name__ == '__main__':
conv2d = Conv2D([5, 10, 10, 3], 32, 3, 1, 'VALID')
input_data = np.random.standard_normal((5, 10, 10, 3))
print("input:", input_data.shape)
conv_out = conv2d.forward(input_data)
print(conv_out.shape)
|