如果一个web请求需要花费几秒,99%是因为数据库没用好或是使用了低效的查询方式, 当使用 orm 的时候, 不好的设计和低效的查询方式都是会杀死你的性能, 改用子查询 annotate, 以 sql 的思维思考, 可以大幅度提高你的 web 性能。
有一个City model,其中有一个计算城市人口密度的方法density。 modes.py:
class State(models.Model):
name = models.CharField(verbose_name="名称", max_length=64)
class City(models.Model):
state = models.ForeignKey(State, on_delete=models.CASCADE, related_name='cities')
name = models.TextField()
population = models.DecimalField(decimal_places='3', max_digits='5')
land_area_km = models.DecimalField(decimal_places='3', max_digits='5')
想要计算一个城市的人口密度,下面这种方式是很自然就能想到的:
illinois = State.objects.get(name='Illinois')
chicago = City.objects.create(
name="Chicago",
state=illinois,
population=26905,
land_area_km=42
)
print(chicago.density())
问题出在当我们想要查询出所有拥挤(密度大于4000)的城市时:
city = City.objects.all()
for i in city:
if i.density() > 200:
print(i)
试想一下如果只有 5% 的城市是符合要求的, 那么将会有 95% 的数据会被过滤,对于不需要的数据, django 也是要花时间完成额外、无意义的操作(将数据转成 model 实例), 对于数据量小的数据量倒没什么, 但是一旦数据量增大,对性能造成的影响是巨大的。
使用 annotate
modes.py:
class CityAQuerySet(models.QuerySet):
def add_density(self):
return self.annotate(
density=F('population') / F('land_area_km')
)
def density(self):
return self.add_density().filter(density__gt=200)
class CityA(models.Model):
objects = CityAQuerySet.as_manager()
views.py:
qs = CityA.objects.density().values('density')
print(qs)
annotate(density=F(‘population’) / F(‘land_area_km’))中的F aggregate函数表示获取population和land_area_km运算后的值。
self.annotate(
density=F('population') / F('land_area_km')
)
表示对于一个queryset,给他其中的每一项object,加上一个density字段,值为population /land_area_km。
使用子查询 subquery
一次查询效率比多次查询高。 杀死django性能最简单的方式就是在for循环中使用query。 如果我要筛选出所有存在人口密度大于 200 的州:
qs = State.objects.all()
for q in qs:
if q.cities.dense_cities().exists():
print(q)
类似这种,exists()会进行一次额外的查询,这会累计很多次毫秒级的查询。加起来的时间也是很可观的。可以用subquery解决这个问题。
city = CityA.objects.dense_cities().values_list('state_id', flat=True)
qs = State.objects.filter(id__in=Subquery(city))
// 或者也可以把Subquery省略掉
qs = State.objects.filter(id__in=city)
print(qs)
models.py:
class StateQuerySet(models.QuerySet):
def add_dense_cities(self):
return self.annotate(
has_dense_cities=Exists(
CityA.objects.filter(state=OuterRef('id')).dense_cities()
)
)
views.py:
qs = State.objects.add_dense_cities().filter(has_dense_cities=True)
print(qs)
总结
提高数据库查询效率的一个重要原则就是降低IO查询次数,尽量避免使用for循环,试试annotate和subquery吧!
|