IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> 1. (Two Sum)两数之和 -> 正文阅读

[Python知识库]1. (Two Sum)两数之和

题目

Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案,且数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

Example 1:

Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Output: Because nums[0] + nums[1] == 9, we return [0, 1].

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

Example 2:

Input: nums = [3,2,4], target = 6
Output: [1,2]

示例 2:

输入:nums = [3,2,4], target = 6
输出:[1,2]

Example 3:

Input: nums = [3,3], target = 6
Output: [0,1]

示例 3:

输入:nums = [3,3], target = 6
输出:[0,1]

Constraints:

  • 2 <= nums.length <= 1 0 4 10^4 104
  • - 1 0 9 10^9 109 <= nums[i] <= 1 0 9 10^9 109
  • - 1 0 9 10^9 109 <= target <= 1 0 9 10^9 109
  • Only one valid answer exists.

提示:

  • 2 <= nums.length <= 1 0 4 10^4 104
  • - 1 0 9 10^9 109 <= nums[i] <= 1 0 9 10^9 109
  • - 1 0 9 10^9 109 <= target <= 1 0 9 10^9 109
  • 只会存在一个有效答案

Follow-up:

Can you come up with an algorithm that is less than O( n 2 n^2 n2) time complexity?

进阶:

你可以想出一个时间复杂度小于 O( n 2 n^2 n2) 的算法吗?

解题思路

方法一:暴力

我们通过遍历数组每个元素x,寻找tatget-x,且数组每个元素只能出现一次所以只要寻找x后面的元素。

Python代码

class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        n = len(nums)
        for i in range(n):
            for j in range(i + 1, n):
                if nums[i] + nums[j] == target:
                    return [i, j]
        return []

Java代码

class Solution {
    public int[] twoSum(int[] nums, int target) {
        int n = nums.length;
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                if (nums[i] + nums[j] == target) {
                    return new int[]{i, j};
                }
            }
        }
        return new int[0];
    }
}

C++代码

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        int n = nums.size();
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                if (nums[i] + nums[j] == target) {
                    return {i, j};
                }
            }
        }
        return {};
    }
};

复杂度分析

  • 时间复杂度:O( n 2 n^2 n2),其中 n 是数组中的元素数量。
  • 空间复杂度:O(1)。

方法二:哈希表

我们使用哈希表 key存储数组的值,value存储数组值的下标从而遍历判断target-x是否存在哈希表中

  • 若不存在哈希表中,则将数组的值和下标加入哈希表
  • 若存在哈希表中,则返回下标

Python代码

class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        hashtable = dict()
        for i, num in enumerate(nums):
            if target - num in hashtable:
                return [hashtable[target - num], i]
            hashtable[nums[i]] = i
        return []

Java代码

class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> hashtable = new HashMap<Integer, Integer>();
        for (int i = 0; i < nums.length; ++i) {
            if (hashtable.containsKey(target - nums[i])) {
                return new int[]{hashtable.get(target - nums[i]), i};
            }
            hashtable.put(nums[i], i);
        }
        return new int[0];
    }
}

C++代码

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        unordered_map<int, int> hashtable;
        for (int i = 0; i < nums.size(); ++i) {
            auto it = hashtable.find(target - nums[i]);
            if (it != hashtable.end()) {
                return {it->second, i};
            }
            hashtable[nums[i]] = i;
        }
        return {};
    }
};

复杂度分析

时间复杂度:O( n n n),其中 n 是数组中的元素数量。

空间复杂度:O( n n n),其中 n 是数组中的元素数量。

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2021-09-02 11:19:16  更:2021-09-02 11:19:38 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/26 23:24:49-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计