coco的json格式数据转voc的xml
python脚本代码
from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
import skimage.io as io
import matplotlib.pyplot as plt
import cv2
from PIL import Image, ImageDraw
savepath="/home/xxxxx/voc/"
img_dir=savepath+'images/'
anno_dir=savepath+'annotations/'
datasets_list=['train2017']
classes_names = ['ship']
dataDir= '/home/xxxx/coco'
headstr = """\
<annotation>
<folder>VOC</folder>
<filename>%s</filename>
<source>
<database>My Database</database>
<annotation>COCO</annotation>
<image>flickr</image>
<flickrid>NULL</flickrid>
</source>
<owner>
<flickrid>NULL</flickrid>
<name>company</name>
</owner>
<size>
<width>%d</width>
<height>%d</height>
<depth>%d</depth>
</size>
<segmented>0</segmented>
"""
objstr = """\
<object>
<name>%s</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>%d</xmin>
<ymin>%d</ymin>
<xmax>%d</xmax>
<ymax>%d</ymax>
</bndbox>
</object>
"""
tailstr = '''\
</annotation>
'''
def mkr(path):
if os.path.exists(path):
shutil.rmtree(path)
os.mkdir(path)
else:
os.mkdir(path)
mkr(img_dir)
mkr(anno_dir)
def id2name(coco):
classes=dict()
for cls in coco.dataset['categories']:
classes[cls['id']]=cls['name']
return classes
def write_xml(anno_path,head, objs, tail):
f = open(anno_path, "w")
f.write(head)
for obj in objs:
f.write(objstr%(obj[0],obj[1],obj[2],obj[3],obj[4]))
f.write(tail)
def save_annotations_and_imgs(coco,dataset,filename,objs):
anno_path=anno_dir+filename[:-3]+'xml'
img_path=dataDir+'/'+'images'+'/'+dataset+'/'+filename
print(img_path)
print('step3-image-path-OK')
dst_imgpath=img_dir+filename
img=cv2.imread(img_path)
if (img.shape[2] == 1):
print(filename + " not a RGB image")
return
shutil.copy(img_path, dst_imgpath)
head=headstr % (filename, img.shape[1], img.shape[0], img.shape[2])
tail = tailstr
write_xml(anno_path,head, objs, tail)
def showimg(coco,dataset,img,classes,cls_id,show=True):
global dataDir
I=Image.open('%s/%s/%s/%s'%(dataDir,'images',dataset,img['file_name']))
print('step2-imageOpen-OK')
annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)
anns = coco.loadAnns(annIds)
objs = []
for ann in anns:
class_name=classes[ann['category_id']]
if class_name in classes_names:
print(class_name)
if 'bbox' in ann:
bbox=ann['bbox']
xmin = int(bbox[0])
ymin = int(bbox[1])
xmax = int(bbox[2] + bbox[0])
ymax = int(bbox[3] + bbox[1])
obj = [class_name, xmin, ymin, xmax, ymax]
objs.append(obj)
return objs
for dataset in datasets_list:
annFile='/home/xxxx/coco/Annotations/train_test2017.json'
print('step1-annFile-OK')
coco = COCO(annFile)
'''
COCO 对象创建完毕后会输出如下信息:
loading annotations into memory...
Done (t=0.81s)
creating index...
index created!
至此, json 脚本解析完毕, 并且将图片和对应的标注数据关联起来.
'''
classes = id2name(coco)
print(classes)
classes_ids = coco.getCatIds(catNms=classes_names)
print(classes_ids)
for cls in classes_names:
cls_id=coco.getCatIds(catNms=[cls])
img_ids=coco.getImgIds(catIds=cls_id)
print(cls,len(img_ids))
for imgId in tqdm(img_ids):
img = coco.loadImgs(imgId)[0]
filename = img['file_name']
print(filename)
objs=showimg(coco, dataset, img, classes,classes_ids,show=False)
print(objs)
save_annotations_and_imgs(coco, dataset, filename, objs)
coco数据集文件夹格式
原coco数据格式目录 coco ——Annotations ——images ————train2017 ————test2017 其中Annotations放json文件 train2017与test2017存放图片
输出voc数据格式
“savepath” ——annotations ——images
其中annotations放xml文件 images存放原始图片
|