作为让高中生心脏骤停的四个字,对于高考之后的人来说可谓刻骨铭心,所以定义不再赘述,直接撸图,其标准方程分别为
椭圆 | 双曲线 | 抛物线 |
---|
x
2
a
+
y
2
b
=
1
\frac{x^2}{a}+\frac{y^2}{b}=1
ax2?+by2?=1 |
x
2
a
?
y
2
b
=
1
\frac{x^2}{a}-\frac{y^2}{b}=1
ax2??by2?=1 |
y
2
=
2
p
x
y^2=2px
y2=2px |
在Python中,绘制动图需要用到matplotlib 中的animation 包,其调用方法以及接下来要用到的参数为
ani = animation.FuncAnimation(fig, func, frames, interval)
其中fig 为绘图窗口,func 为绘图函数,其返回值为图像,frames 为迭代参数,如果为整型的话,其迭代参数则为range(frames) 。
椭圆
为了绘图方便,椭圆的参数方程为
{
x
=
a
cos
?
t
y
=
b
sin
?
t
\left\{ \begin{aligned} x = a\cos t\\ y = b\sin t \end{aligned}\right.
{x=acosty=bsint?
设
a
=
5
,
b
=
3
,
c
=
4
a=5,b=3,c=4
a=5,b=3,c=4,则焦点为
(
4
,
0
)
,
(
?
4
,
0
)
(4,0),(-4,0)
(4,0),(?4,0),则有
代码为:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
a,b,c = 5,3,4
fig = plt.figure(figsize=(12,9))
ax = fig.add_subplot(autoscale_on=False,
xlim=(-a,a),ylim=(-b,b))
ax.grid()
line, = ax.plot([],[],'o-',lw=2)
trace, = ax.plot([],[],'-', lw=1)
theta_text = ax.text(0.02,0.85,'',transform=ax.transAxes)
textTemplate = '''theta = %.1f°\n
lenL = %.1f, lenR = %.1f\n
lenL+lenR = %.1f'''
xs,ys = [], []
def animate(i):
if(i==0):
xs.clear()
ys.clear()
theta = i*0.04
x = a*np.cos(theta)
y = b*np.sin(theta)
xs.append(x)
ys.append(y)
line.set_data([-c,x,c], [0,y,0])
trace.set_data(xs,ys)
lenL = np.sqrt((x+c)**2+y**2)
lenR = np.sqrt((x-c)**2+y**2)
theta_text.set_text(textTemplate %
(180*theta/np.pi, lenL, lenR, lenL+lenR))
return line, trace, theta_text
ani = animation.FuncAnimation(fig, animate, 157,
interval=5, blit=True)
ani.save("ellipse.gif")
plt.show()
双曲线
双曲线的参数方程为
{
x
=
a
ch
?
t
=
e
t
+
e
?
t
2
y
=
b
sh
?
t
=
e
t
?
e
?
t
2
\left\{\begin{aligned} x = a\ch t=\frac{e^t+e^{-t}}{2}\\ y = b\sh t=\frac{e^t-e^{-t}}{2} \end{aligned}\right.
????????x=acht=2et+e?t?y=bsht=2et?e?t??
设
a
=
4
,
b
=
3
,
c
=
5
a=4,b=3,c=5
a=4,b=3,c=5,则代码如下
a,b,c = 4,3,5
fig = plt.figure(figsize=(12,9))
ax = fig.add_subplot(autoscale_on=False,
xlim=(-c,16),ylim=(-12,12))
ax.grid()
line, = ax.plot([],[],'o-',lw=2)
trace, = ax.plot([],[],'-', lw=1)
theta_text = ax.text(0.01,0.85,'',
transform=ax.transAxes)
textTemplate = '''t = %.1f\n
lenL = %.1f, lenR = %.1f\n
lenL-lenR = %.1f'''
xs,ys = [],[]
def animate(t):
if(t==-3):
xs.clear()
ys.clear()
x = a*np.cosh(t)
y = b*np.sinh(t)
xs.append(x)
ys.append(y)
line.set_data([-c,x,c], [0,y,0])
trace.set_data(xs,ys)
lenL = np.sqrt((x+c)**2+y**2)
lenR = np.sqrt((x-c)**2+y**2)
theta_text.set_text(textTemplate %
(t, lenL, lenL, lenL-lenR))
return line, trace, theta_text
frames = np.arange(-3,3,0.05)
ani = animation.FuncAnimation(fig, animate,
frames, interval=5, blit=True)
ani.save("hyperbola.gif")
plt.show()
抛物线
令
p
=
1
p=1
p=1,则焦点位置为
(
0
,
p
2
)
(0,\frac{p}{2})
(0,2p?),准线为
x
=
?
p
2
x=-\frac{p}{2}
x=?2p?,代码如下
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
a,b,c = 4,3,5
p = 1
fig = plt.figure(figsize=(12,9))
ax = fig.add_subplot(autoscale_on=False,
xlim=(-0.6,4.5),ylim=(-3,3))
ax.grid()
ax.plot([-p/2,-p/2],[-5,5],'-',lw=2)
line, = ax.plot([],[],'o-',lw=2)
trace, = ax.plot([],[],'-', lw=1)
theta_text = ax.text(0.05,0.85,'',
transform=ax.transAxes)
textTemplate = '''y = %.1f\n
lenL = %.1f, lenF = %.1f\n
lenL-lenF = %.1f'''
xs,ys = [],[]
def animate(y):
if(y==-3):
xs.clear()
ys.clear()
x = y**2/p/2
xs.append(x)
ys.append(y)
line.set_data([-p,x,p/2], [y,y,0])
trace.set_data(xs,ys)
lenL = x+p/2
lenF = np.sqrt((x-p/2)**2+y**2)
theta_text.set_text(textTemplate %
(y, lenL, lenF, lenL-lenF))
return line, trace, theta_text
frames = np.arange(-3,3,0.1)
ani = animation.FuncAnimation(fig, animate,
frames, interval=5, blit=True)
ani.save("parabola.gif")
plt.show()
极坐标方程
圆锥曲线在极坐标系下有相同的表达式,即
ρ
=
p
1
?
e
cos
?
φ
\rho=\frac{p}{1-e\cos\varphi}
ρ=1?ecosφp?
其中,
p
p
p为焦参数,
e
e
e为离心率,当
∣
e
∣
>
1
|e|>1
∣e∣>1时为双曲线;
∣
e
∣
=
1
|e|=1
∣e∣=1时为抛物线,
∣
e
∣
<
1
|e|<1
∣e∣<1时为椭圆,特别地
e
=
0
e=0
e=0为圆。
在matplotlib 中,极坐标图像需要通过projection='polar' 来标识,其代码为
p = 2
fig = plt.figure(figsize=(12,9))
ax = fig.add_subplot(autoscale_on=False, projection='polar')
ax.set_rlim(0,8)
trace, = ax.plot([],[],'-', lw=1)
theta_text = ax.text(0.05,0.95,'',transform=ax.transAxes)
textTemplate = 'e = %.1f\n'
theta = np.arange(-3.1,3.2,0.1)
def animate(e):
rho = p/(1-e*np.cos(theta))
trace.set_data(theta,rho)
theta_text.set_text(textTemplate % e)
return trace, theta_text
frames = np.arange(-2,2,0.1)
ani = animation.FuncAnimation(fig, animate,
frames, interval=100, blit=True)
ani.save("polar.gif")
plt.show()
|