前言
自己做笔记自己看的
一、软件安装
? 设备:mac m1 电脑
?? ? ? ? ? ? ? ? ? ???????Anaconda | Individual Edition??下载链接
? ? ? ? ? ? ? ? ? ?Installing on macOS — Anaconda documentation?帮助链接
? ? ? ? ? ? ? ?pycharm CE
二、创建环境及安装软件
1.创建环境 chipseq
conda? create -n chipseq? python=3
conda activate chipseq #激活环境
conda deactivate
2.chipseq 环境下安装软件
ps:一项一项安装,不然容易卡住
conda install -y bioconda parallel-fastq-dump ?#SRR→FASTQ 转换
conda install -y trim-galore #质控
conda install -y?bioconda bowtie2 # fastq比对到 hg19
brew tap homebrew/science?
brew install samtools?#sam 转化为 bam
conda install -y macs2 #峰值定量,差异分析
conda install -y conda-forge libgfortran #macs2 差异分析辅助用
conda install -y bioconda deeptools #可视化
#包含 bamcoverage
https://deeptools.readthedocs.io/en/latest/content/tools/bamCoverage.html
IGV 下载https://software.broadinstitute.org/software/igv/download #可视化
ROSE 安装
https://bitbucket.org/young_computation/rose/src/master/ ROSE 下载
#把所有要处理的文件都放到 rose 文件夹:sorted.bam, bed,bam.bai
#创建 Python2.7
conda create -n rose python=2.7
conda activate rose
Homer安装
perl configureHomer.pl -install
open -a TextEdit ~/.bash_profile
PATH=$PATH:/Users/chucknorris/homer/bin/??#路径加入到系统路径中
source ~/.bash_profile
- perl?configureHomer.pl -list #查看所有的?list
三、具体分析步骤
1.数据来源
使用数据Wang J, Zou JX, Xue X, Cai D et al.?ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer.?Nat Med?2016 May;22(5):488-96. PMID:?27019329
2.下载数据并重命名
wget https://sra-pub-run-odp.s3.amazonaws.com/sra/SRR8557353/SRR8557353
mv???? SRR8557353????? input.h3k.con
?
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos3/sra-pub-run-20/SRR8557351/SRR8557351.1
mv? SRR8557351.1?? ip.h3k.con
?
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos3/sra-pub-run-21/SRR8557354/SRR8557354.1
mv? SRR8557354.1?? input.h3k.xy
?
wget https://sra-pub-run-odp.s3.amazonaws.com/sra/SRR8557352/SRR8557352
mv?? SRR8557352???? ip.h3k.xy
3.fastq 文件转换(--sra-id?此步骤把 SRR 的名称改掉,加快运行速度,速度非常快)
parallel-fastq-dump —sra-id input.h3k.con —threads 35? —outdir out/ —split-files —gzip
parallel-fastq-dump —sra-id ip.h3k.con?? —threads 35? —outdir out/ —split-files —gzip
parallel-fastq-dump —sra-id? input.h3k.xy?? —threads 35? —outdir out/ —split-files —gzip
parallel-fastq-dump —sra-id?? ip.h3k.xy?? —threads 35? —outdir out/ —split-files —gzip
4.质控
4.1 trim_galore
- trim_galore(只能单线程)
- Cutadapt:去接头,去除3端低质量碱基,去除长度太短的序列
- ????report.txt
- ????fq.gz(用来比对)
trim_galore input.h3k.con_1.fastq.gz? -q 25 —phred33 —length 25 -e 0.1 —stringency 4
trim_galore input.h3k.xy_1.fastq.gz? -q 25 —phred33 —length 25 -e 0.1 —stringency 4
trim_galore ip.h3k.con_1.fastq.gz? -q 25 —phred33 —length 25 -e 0.1 —stringency 4
trim_galore ip.h3k.xy_1.fastq.gz? -q 25 —phred33 —length 25 -e 0.1 —stringency 4
4.2 FastQC质控报告生成(旧的数据)
- fastqc -o?/Users/xusiqi/CHIP/out?-t 6?/Users/xusiqi/CHIP/out/SRR2242680_1_trimmed.fq.gz
- fastqc -o?/Users/xusiqi/CHIP/out?-t 6?/Users/xusiqi/CHIP/out/SRR2242690_1_trimmed.fq.gz
- fastqc -o?输出绝对路径?-t 线程数 输入文件绝对路径
- -o?后面为文件输出绝对路径,-t 6(为线程数),?最后为输入文件绝对路径;大约 5min/file
5.bowtie2比对(15min/file)
bowtie2 -p 35 -x /Users/xusiqi/CHIP/index/hg19/hg19 -U? /Users/xusiqi/CHIP/lesson23/out/input.h3k.con_1_trimmed.fq.gz? -S input.h3k.con.sam
bowtie2 -p 35 -x /Users/xusiqi/CHIP/index/hg19/hg19 -U? /Users/xusiqi/CHIP/lesson23/out/input.h3k.xy_1_trimmed.fq.gz? -S input.h3k.xy.sam
bowtie2 -p 35 -x /Users/xusiqi/CHIP/index/hg19/hg19 -U? /Users/xusiqi/CHIP/lesson23/out/ip.h3k.con_1_trimmed.fq.gz? -S ip.h3k.con.sam
bowtie2 -p 35 -x /Users/xusiqi/CHIP/index/hg19/hg19 -U? /Users/xusiqi/CHIP/lesson23/out/ip.h3k.xy_1_trimmed.fq.gz? -S ip.h3k.xy.sam
6.1view &sort
samtools view -S -b input.h3k.con.sam > input.h3k.con.bam
samtools sort input.h3k.con.bam -o input.h3k.con.sorted.bam
?
samtools view -S -b input.h3k.xy.sam > input.h3k.xy.bam
samtools sort input.h3k.xy.bam -o input.h3k.xy.sorted.bam
?
samtools view -S -b ip.h3k.con.sam >ip.h3k.con.bam
samtools sort ip.h3k.con.bam -o ip.h3k.con.sorted.bam
?
samtools view -S -b ip.h3k.xy.sam > ip.h3k.xy.bam
samtools sort ip.h3k.xy.bam -o ip.h3k.xy.sorted.bam
6.2 index
samtools index input.h3k.con.sorted.bam
samtools index input.h3k.xy.sorted.bam
samtools index ip.h3k.con.sorted.bam
samtools index? ip.h3k.xy.sorted.bam
7.bamCoverage?BW转换 bam 转换成 bw
bamCoverage -e 170 -bs 10 -p 35 -b input.h3k.con.sorted.bam -o input.h3k.con.sorted.bw
bamCoverage -e 170 -bs 10 -p 35 -b input.h3k.xy.sorted.bam -o input.h3k.xy.sorted.bw
bamCoverage -e 170 -bs 10 -p 35 -b ip.h3k.con.sorted.bam -o ip.h3k.con.sorted.bw
bamCoverage -e 170 -bs 10 -p 35 -b ip.h3k.xy.sorted.bam -o ip.h3k.xy.sorted.bw
8.IGV查看 bw文件 peak
9.MACS2 callpeak
10.MACS2 差异分析(2021-10-15 待完善)
参考教程:
Call differential binding events · macs3-project/MACS Wiki · GitHub
需要的文件名
- input.h3k.con.sorted.bam
- input.h3k.xy.sorted.bam?
- ip.h3k.con.sorted.bam???
- ip.h3k.xy.sorted.bam
-
con_control_lambda.bdg -
xy_control_lambda.bdg -
con_treat_pileup.bdg?? -
?xy_treat_pileup.bdg
| d-length? | tags after filtering | macs2 predictd -i input.h3k.con.sorted.bam macs2 predictd -i input.h3k.xy.sorted.bam macs2 predictd -i ip.h3k.con.sorted.bam macs2 predictd -i??ip.h3k.xy.sorted.bam | 199 205 | 13313222 24184450 22342330 21410271 | | 202 | callpeak excle?表中就有 |
11.Homer 分析 motif
公众号参考?HOMER | chipseq数据进行peaks的差异分析
11.1查看所有的?list:
perl configureHomer.pl -list
11.2下载注释信息
perl configureHomer.pl -install hg19
#(安装hg19的GENOMES,会自动下载human数据,1.38G,多试几次,网速可达 6-7Mb)
11.3 Create a tag directory
- homer?下新建一个?out?文件夹,在此路径下运行以下代码
makeTagDirectory?文件夹名(tag directory)??-genome?hg19(带绝对路径)??-checkGC??输入文件 sam(绝对路径)
11.4 Differentially Bound Peaks(找差异peak)
getDifferentialPeaks <peak file> <target tag directory> <background tag directory> [options]
输入文件名:
con_peaks.narrowPeak ?xy_peaks.narrowPeak input.h3k.con ? input.h3k.xy ? ?ip.h3k.con ? ? ip.h3k.xy
getDifferentialPeaks /Users/xusiqi/chip/lesson23/out/con_peaks.narrowPeak ip.h3k.con/ input.h3k.con/ > con.diffpeaks.csv
getDifferentialPeaks /Users/xusiqi/chip/lesson23/out/xy_peaks.narrowPeak ip.h3k.xy/ input.h3k.xy/ > xy.diffpeaks.csv
11.5?Annotate peaks(Peak注释)
Usage:?annotatePeaks.pl?<peak?file?|?tss>?<genome?version>??[additional?options...]
输入文件名:con.diffpeaks.csv ? ?xy.diffpeaks.csv
annotatePeaks.pl con.diffpeaks.csv /Users/xusiqi/chip/homer/data/genomes/hg19 > con.diffpeaks.anno.txt
annotatePeaks.pl xy.diffpeaks.csv /Users/xusiqi/chip/homer/data/genomes/hg19 > xy.diffpeaks.anno.txt
用 R 把差异peak 和 Peak 注释合并:fread,merge 函数
11.6 其他功能
- annotatePeaks.pl程序还可以用于创建显示相对于给定基因组特征(包括转录起始位点(TSS)或用户想要定义的任何其他区域)的相对读富集的直方图。由于TSS经常用于此目的,所以HOMER为TSS提供了一个内置注释(基于RefSeq转录本)。创建直方图的关键参数是“-hist #”和“-size #”选项,它们控制直方图的装箱大小和总长度。另一个重要的选项是“-d”,它指定要为哪些实验编译直方图。
- annotatePeaks.pl tss hg19 -size 8000 -hist 10 -d h3k.con/ h3k.bay/ > output.txt
- 用电子表格程序/Excel打开output.txt文件。将注意到第一列给出了到TSS的距离偏移量,然后是对应于每个实验的“覆盖率”、“+标记”和“-标记”的列。尝试用第一列作为X-Y线形图来查看模式。
12. ROSE 寻找超级增强子 SE(super enhancer)
12.2 ROSE 安装见上
12.3 ROSE 寻找 SE
?
python ROSE_main.py -g HG19 -i xy_summits.bed -r ip.h3k.xy.sorted.bam -c input.h3k.xy.sorted.bam -o /Users/xusiqi/chip/rose/xy
python ROSE_main.py -g HG19 -i con_summits.bed -r ip.h3k.con.sorted.bam -c input.h3k.con.sorted.bam -o /Users/xusiqi/chip/rose/con
(未完待续)
|