| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> Python知识库 -> 分享12个Python项目教程,看完随便拿! -> 正文阅读 |
|
[Python知识库]分享12个Python项目教程,看完随便拿! |
你将学习到如何用Python的图形处理库,将一张图片转化为字符画。 最终效果图如下: 我们在学习过程中最容易犯的一个错误就是:看的多,动手的少。特别是对一些项目的整体开发,我们接触的机会就更少了。 Python3实现火车票查询工具使用 Python3 抓取 12306 网站信息提供一个命令行的火车票查询工具。通过该项目的实现,可以熟悉 Python3 基础及网络编程,以及 docopt,requests,prettytable 等库的使用。? ?用Python写爬虫很方便,下面的两门课程都和爬虫有关。它们都相当实用,一个关乎出行,一个关乎你的幸福...... ?Python3实现火车票查询工具很适合用来入门爬虫。你将学习到爬虫最重要的两个步骤——数据的爬取和数据可视化。完成项目后,你只需要敲一行命令就能获得你想要的车票信息,墙裂推荐各位小伙伴学习。 效果如图: ? 当你想查询一下火车票信息的时候,你还在上 12306 官网吗?或是打开你手机里的 APP? 下面让我们来用 Python 写一个命令行版的火车票查看器, 只要在命令行敲一行命令就能获得你想要的火车票信息!如果你刚掌握了 Python 基础,这将是个不错的小练习。
Python3实现淘女郎照片爬虫??每一个老司机都和这门课相见恨晚。它的标题可能吸引不了你,但请直接看效果: ? 这是一个很普通的页面,你可以把它换成任何网站。 完成爬取后,效果如下: 8个多G的美女图片,按文件夹、姓名、地点整整齐齐地排列在那,不喜不悲......整个过程20分钟完成,在你自己的环境中会更快。 ? 本项目通过使用 Python 实现一个淘女郎图片收集爬虫,学习并实践 BeautifulSoup、Selenium Webdriver 及正则表达式等知识。在项目开发过程中采用瀑布流开发模型。
Python基于共现提取?《釜山行》人物关系? 这个课比较简单,通过Python分析「 釜山行 」的剧本,绘制出一份人物关系图。你将学到如何用Python分析和提取数据、用Gephi软件使提取的数据可视化。 最终效果图如下: ? ?当然,毕竟是电影,人物关系较少。嫌不过瘾的同学,请下课后拿「 冰与火之歌 」练手。 《釜山行》是一部丧尸灾难片,其人物少、关系简单,非常适合我们学习文本处理。这个项目将介绍共现在关系中的提取,使用python编写代码实现对《釜山行》文本的人物关系提取,最终利用Gephi软件对提取的人物关系绘制人物关系图。
Python图片转字符化? ? ? 这门课非常可怕,在实验楼已经有32462人学过......它非常简单,但效果却十分炫酷,装逼指数爆棚。你将学习到如何用Python的图形处理库,将一张图片转化为字符画。 最终效果图如下: ? 效果图中的字符为蓝色,你还可以通过调整,增加更多的颜色,使字符画更像原图。 本课程讲述怎样使用 Python 将图片转为字符画。
Python3的图片隐写术?? 上面的课程教你把图片变得炫酷,这个课程就教你把图片里的信息隐藏。 隐写术到底是什么,这里给大家讲个故事吧: 2012年大众点评和食神网的竞争非常激烈,后者开始大规模地爬取前者的数据,主要是图片。大众点评没有走中国的司法流程,而是直接向APP STORE提交了证据,使食神的APP下架2次。这些证据就是食神爬取的图片,图片中用隐写术嵌入了大众点评的版权信息! 这是如何实现的呢? 下面有一张lenna的图片: ?提取该图片的绿色分量: ? ? 取绿色分量的最低位,如果是1就设置图片为绿,是0设为黑。 ? 你将看到隐藏的信息:"Steganography"。 大众点评正是利用了这些信息向苹果公司证明了图片的来源,最终保护了公司的利益。 6不6?想不想学?这是课程的效果图: ? 以看到这两个蓝胖子几乎一模一样,但有一只却真实隐藏了数据在里面。 用Python实现图片隐写术。 知识点:
神经网络实现人脸识别任务?? 作为一名程序员,你不可能没听过大数据、人工智能、人脸识别这些名词。这个项目将告诉你,这些名词离你都并不遥远,通过Python,你可以零距离地完成一个人脸识别的项目。 我们将利用在基于无监督学习的自编码器实现?课程中介绍过的自编码器,实现对耶鲁大学人脸数据库B+中的人脸图片数据进行降维,再利用降维后的人脸数据进行有监督神经网络学习进行分类器训练,最终达到人脸识别的目的。
?Python破解验证码? 大家用爬虫爬取数据时,验证码都是绕不过去的一关。这个项目将带你用Python破解验证码的玄机! 效果如图: ? 生活中,我们在登录微博,邮箱的时候,常常会碰到验证码。在工作时,如果想要爬取一些数据,也会碰到验证码的阻碍。本次试验将带领大家认识验证码的一些特性,并利用 Python 中的 pillow 库完成对验证码的破解。
高德API+Python解决租房问题?我们需要考虑通勤范围来选地段,由于对交通的不熟悉,只有选择自己附近的较贵的地段,花了很多时间阅览赶集或者58里的个人房源信息,然而个人房源信息中仍充斥着大量中介,抱着一点希望打了几个电话,得到的回答都是这个价位根本租不到,再高点也租不到(大都与发布的房源信息不符),于是就有了这个租房脚本和课程。 总结
效果如下: ? ? 我们将编写Python脚本爬取某租房网站的房源信息,利用高德的 js API 在地图上标出房源地点,划出距离工作地点1小时内可到达的范围,附上公交路径规划功能查看不同路径的用时。
Python3色情图片识别?? ? 使用 Python3 去识别图片是否为色情图片,我们会使用到 PIL 这个图像处理库,会编写算法来划分图像的皮肤区域。其中涉及到Python 3 基础知识,肤色像素检测与皮肤区域划分算法,Pillow及argparse的使用。 最终效果图如下: ? 使用 Python3 去识别图片是否为色情图片,我们会使用到 PIL 这个图像处理库,会编写算法来划分图像的皮肤区域。
NBA常规赛结果预测,——利用Python进行比赛数据分析?? 不知道你是否朋友圈被刷屏过NBA的某场比赛进度或者结果?或者你就是一个NBA狂热粉,比赛中的每个进球,抢断或是逆转压哨球都能让你热血沸腾。除去观赏精彩的比赛过程,我们也同样好奇比赛的结果会是如何。因此本节课程,将给同学们展示如何使用nba比赛的以往统计数据,判断每个球队的战斗力,及预测某场比赛中的结果。 我们将基于2015-2016年的NBA常规赛及季后赛的比赛统计数据,预测在当下正在进行的2016-2017常规赛每场赛事的结果。 ?最终效果图如下: ? 利用NBA在2015~2016年的比赛统计数据进行回归模型建立,最终在今年2016~2017的常规赛中预测每场比赛的输赢情况。
pygame开发打飞机游戏?? 使用Python快速开发一款PC端玩耍的微信打飞机游戏,基于pygame实现。本课程难度中等属于python中等的项目课程,需要有 pygame 和 Python 基础。可以在之前的课程当中先学习一些基础的 pygame 知识然后再学习本课程。 最终效果图如下: ? ? 使用Python快速开发一款PC端玩耍的微信打飞机游戏,基于pygame实现。 介绍在 Linux 桌面环境下使用 Python 及 pygame 快速开发小游戏的方式。可以通过这个游戏入门 pygame 游戏开发。 K——近邻算法实现手写数字识别系统?《机器学习实战》? 从电影题材分类的例子入手,详细讲述“k-近邻”算法的原理。在这之后,我们将会使用该算法实现手写数字识别系统,书籍教程配套实验练习,帮助您更好地实战。 从电影题材分类的例子入手,详细讲述k-近邻算法的原理。在这之后,我们将会使用该算法实现手写数字识别系统。
更多有趣、好玩的项目请查看【Python精选项目资源】 或者加入Python学习群:867538707? 或+V:gpxj2580? 备注110领取,在手机上就可以直接看到所有课程~ ? ? ? ? ? ? ? ? ? ? ? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/15 20:49:28- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |