IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> Numpy&Pandas的区别和联系 -> 正文阅读

[Python知识库]Numpy&Pandas的区别和联系

目录

一、Numpy

二、Pandas


一、Numpy

numpy是以矩阵为基础的数学计算模块,提供高性能的矩阵运算,数组结构为ndarray

首先需要明确数组与列表的区别:数组是一种特殊变量,虽与列表相似,但列表可以存储任意类型的数据,数组只能存储一种类型的数据,同时,数组提供了许多方便统计计算的功能(如平均值mean、标准差std等)。

那么numpy有哪些功能呢?

首先在使用前要导入该模块(导入前要安装,方法自行搜索吧(*^-^*)),代码如下:

import numpy as np

1. 通过原有列表转化为数组

2.直接生成数组

  • 生成一维数组? ?
  • ?

?上图中由于生成一维数组时,没有给参数10 定义数据类型,所以数组元素的类型默认为float64。那定义数据类型为整型时会是什么结果呢?

  • 生成多维数组?

zeros返回来一个给定形状和类型的用0填充的数组,同理,ones返回来一个给定形状和类型的用1填充的数组。但更多情况下我们想指定某个值,这时用np.full(shape, val)生成全为val的值,如下:

?

  • 随机数取值?

我们知道random库中可以通过random.randint(5,10)来随机生成一个5-10的数,如下:

在numpy中也有一个类似的加强版的功能。

?

  • 范围取值??
  • ?

    访问数组中的元素

?

  • ?基本数学运算

numpy在做运算时,是对数组中每个元素都进行运算。

?常用的运算符号及等价函数总结如下:

?

  • ?数组变形

?数组变形时,数组总大小保持不变,如上图中我们定义了一个两行五列的数组,总大小为2*5=10,经变形后得到一行十列的数组,总大小仍为10,但我们无法变成3*4或6*9等类型。

  • 数组拼接

  • 数组排序

二、Pandas

pandas是基于numpy数组构建的,但二者最大的不同是pandas是专门为处理表格和混杂数据设计的,比较契合统计分析中的表结构,而numpy更适合处理统一的数值数组数据。pandas数组结构有一维Series二维DataFrame

使用前同样需要先导入该模块,代码如下:

import pandas as pd

1. Series

Series是一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据标签(索引index)组成。

?Series的字符串表现形式为:索引在左边,值在右边。如果不为数据指定索引,则会默认创建一个0到n-1的整数型索引。

  • ?通过原有字典转化为数组

  • ?访问元素

与numpy相比,除了根据位置获取值外,还可以根据索引获取。

?

  • ?向量化运算

上图运行结果可以看到出现了缺失值NaN(not a number),这是因为索引值b、c、d、e、f、g只出现在一个一维数组中。在数据分析过程中,我们通常不希望缺失值出现,那么如何解决呢?

一般常用的有两种方法:

?2. DataFrame

DataFrame是一个表格型的数据结构,其中的数据是以一个或多个二维块存放的,而不是列表、字典或别的一维数据结构。它含有一组有序的列,每列可以是不同的数据类型,它既有行索引,也有列索引。

  • 将原有字典转化为DataFrame

  • ?访问元素

?

?

  • ?条件筛选

  • ??排序

?

  • ?应用函数

?

?其他常用函数举例如下:

?

# 取前五行
table.head()

# 取后五行
table.tail()

# 查看行列数
table.shape()

# 查看每一列的统计信息
table.describe()

......

?以上就是numpy与pandas的基础内容,如有遗漏或错误,欢迎评论区指正~~

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2021-10-24 14:53:43  更:2021-10-24 14:55:51 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/15 20:58:01-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码