IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> 人脸识别的代码及问题 -> 正文阅读

[Python知识库]人脸识别的代码及问题

首先这里面结合了b站和csdn中共同的代码
这是利用图片中的像素值进行和摄像头实时拍摄进行的对比
代码如下:
主要在pycharm中使用

import cv2
import numpy as np
import os
# coding=utf-8
import urllib
import urllib.request
import hashlib

#加载训练数据集文件
recogizer=cv2.face.LBPHFaceRecognizer_create()
recogizer.read('D:/Game/aaa/opencv/trainer.yml')
names=[]
warningtime = 0

def md5(str):
    import hashlib
    m = hashlib.md5()
    m.update(str.encode("utf8"))
    return m.hexdigest()

statusStr = {
    '0': '短信发送成功',
    '-1': '参数不全',
    '-2': '服务器空间不支持,请确认支持curl或者fsocket,联系您的空间商解决或者更换空间',
    '30': '密码错误',
    '40': '账号不存在',
    '41': '余额不足',
    '42': '账户已过期',
    '43': 'IP地址限制',
    '50': '内容含有敏感词'
}


def warning():
    smsapi = "http://api.smsbao.com/"
    # 短信平台账号
    user = '13******10'
    # 短信平台密码
    password = md5('*******')
    # 要发送的短信内容
    content = '【报警】\n原因:检测到未知人员\n地点:xxx'
    # 要发送短信的手机号码
    phone = '*******'

    data = urllib.parse.urlencode({'u': user, 'p': password, 'm': phone, 'c': content})
    send_url = smsapi + 'sms?' + data
    response = urllib.request.urlopen(send_url)
    the_page = response.read().decode('utf-8')
    print(statusStr[the_page])

#准备识别的图片
def face_detect_demo(img):
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换为灰度
    face_detector=cv2.CascadeClassifier('D:/opencv/opencv/sources/data/haarcascades/haarcascade_frontalface_default.xml')
    face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(100,100),(300,300))
    for x,y,w,h in face:
        cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
        cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1)
        # 人脸识别
        ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])
        #print('标签id:',ids,'置信评分:', confidence)
        if confidence > 70:
            global warningtime
            warningtime += 1
            if warningtime > 100:
               warning()
               warningtime = 0
            cv2.putText(img, 'unknow', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
        else:
            cv2.putText(img,str(names[ids]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
    cv2.imshow('result1',img)
    #print('bug:',ids)

def name():
    path = 'D:/opencv/opencv/baocuntupian/'
    #names = []
    imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
    for imagePath in imagePaths:
       name = str(os.path.split(imagePath)[1].split('.',2)[1])
       names.append(name)

videoSourceIndex=0
cap=cv2.VideoCapture(cv2.CAP_DSHOW+videoSourceIndex)
name()
while True:
    flag,frame=cap.read()
    if not flag:
        break

    face_detect_demo(frame)
    if ord(' ') == cv2.waitKey(30):
        break
cv2.destroyAllWindows()
cap.release()

不过有时候在这一行容易出现数组越界的错误,靠大佬指正啦!

 else:
    cv2.putText(img,str(names[ids]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
    cv2.imshow('result1',img)
  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章           查看所有文章
加:2022-01-24 10:47:36  更:2022-01-24 10:50:11 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/5 9:35:28-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码