IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> 【python+ROS+路径规划】四、发布路径 -> 正文阅读

[Python知识库]【python+ROS+路径规划】四、发布路径

当上游和算法接上去之后,下面考虑如何将算法发布出去,并且现实在rviz中

发布路径

算法给出的格式

整理一下,举个例子
地图格式为:


[[-1,-1,-1,-1,-1,-1,-1]
 [-1, 0, 0, 0, 0, 0,-1]
 [-1, 0, 0, 1, 0, 0,-1]
 [-1, 0, 0, 1, 0, 0,-1]
 [-1, 0, 0, 1, 0, 0,-1]
 [-1,-1,-1,-1,-1,-1,-1]]

起始点和目标点为:

[1,2],[4,4]

Astar算法参考:link

输出是一系列的点:

[[1,2],[2,2],[3,2],[4,2],[4,3],[4,4]]

查看rviz接收路径的数据类型

rviz接受数据类型是Path

> rosmsg info Path

[nav_msgs/Path]:
std_msgs/Header header
  uint32 seq
  time stamp
  string frame_id
geometry_msgs/PoseStamped[] poses
  std_msgs/Header header
    uint32 seq
    time stamp
    string frame_id
  geometry_msgs/Pose pose
    geometry_msgs/Point position
      float64 x
      float64 y
      float64 z
    geometry_msgs/Quaternion orientation
      float64 x
      float64 y
      float64 z
      float64 w

需要输入时间戳,frame_id,和pose消息。

如何发布

我一直以为路径的这些点会像发布地图一样,将所有信息储存在一个列表中,一起发送,但是现在看来,他是一个点一个点的发,所以我们要设置发送频率,让他在1秒钟多发送一些,甚至都发送完。

def sendAstarPath(self):
        AstarPath = rospy.Publisher("AstarPath",Path,queue_size=15)
        init_path = Path()

        #设置发布频率
        rate = rospy.Rate(200)
        
        for i in range(len(self.pathList)):

            init_path.header.stamp = rospy.Time.now()
            init_path.header.frame_id = "map"

            current_point = PoseStamped()
            current_point.header.frame_id = "map"
            current_point.pose.position.x = pixwidth - self.pathList[i][0]*self.resolution
            current_point.pose.position.y = self.pathList[i][1]*self.resolution - pixheight
            current_point.pose.position.z = 0
            #角度
            current_point.pose.orientation.x = 0
            current_point.pose.orientation.y = 0
            current_point.pose.orientation.z = 0
            current_point.pose.orientation.w = 1

            init_path.poses.append(current_point)
            #发布消息
            AstarPath.publish(init_path)

            rate.sleep()
            i += 1
        time.sleep(0.5)

因为这里的x和y坐标是地图坐标,而Astar中的是栅格坐标,所以我们要给他转回去,这个就是前一节公式的逆。

在rviz中显示

消息发布后,在rviz中接收发布的AstarPath话题,就可以显示对应的话题了。

以下是所有代码:

#! /usr/bin/env python


import time
from numba import jit
import math
import rospy
import numpy as np
import matplotlib.pyplot as plt
from nav_msgs.msg import OccupancyGrid
from geometry_msgs.msg import PoseWithCovarianceStamped
from geometry_msgs.msg import PoseStamped
from nav_msgs.msg import Path



class MapMatrix:
    """
        说明:
            1.构造方法需要两个参数,即二维数组的宽和高
            2.成员变量w和h是二维数组的宽和高
            3.使用:对象[x][y]可以直接取到相应的值
            4.数组的默认值都是0
    """
    def __init__(self,map):
        self.w=map.shape[0]
        self.h=map.shape[1]
        self.data=map
        
 
 
    def showArrayD(self):
        for y in range(self.h):
            for x in range(self.w):
                print(self.data[x][y],end=' ')
            print("")
 
    def __getitem__(self, item):
        return self.data[item]

class Point:
    """
    表示一个点
    """
    def __init__(self,x,y):
        self.x=x;self.y=y
 
    def __eq__(self, other):
        if self.x==other.x and self.y==other.y:
            return True
        return False
    # def __str__(self):
    #     #return "x:"+str(self.x)+",y:"+str(self.y)
    #     return [self.y,self.x]
class AStar:
    """
    AStar算法的Python3.x实现
    """
 
    class Node:  # 描述AStar算法中的节点数据
        def __init__(self, point, endPoint, g=0):
            self.point = point  # 自己的坐标
            self.father = None  # 父节点
            self.g = g  # g值,g值在用到的时候会重新算
            self.h = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) * 10  # 计算h值
 
    def __init__(self, map2d, startPoint, endPoint, passTag=0):
        """
        构造AStar算法的启动条件
        :param map2d: ArrayD类型的寻路数组
        :param startPoint: Point或二元组类型的寻路起点
        :param endPoint: Point或二元组类型的寻路终点
        :param passTag: int类型的可行走标记(若地图数据!=passTag即为障碍)
        """
        # 开启表
        self.openList = []
        # 关闭表
        self.closeList = []
        # 寻路地图
        self.map2d = map2d
        # 起点终点
        if isinstance(startPoint, Point) and isinstance(endPoint, Point):
            self.startPoint = startPoint
            self.endPoint = endPoint
        else:
            self.startPoint = Point(*startPoint)
            self.endPoint = Point(*endPoint)
 
        # 可行走标记
        self.passTag = passTag
 
    def getMinNode(self):
        """
        获得openlist中F值最小的节点
        :return: Node
        """
        currentNode = self.openList[0]
        for node in self.openList:
            if node.g + node.h < currentNode.g + currentNode.h:
                currentNode = node
        return currentNode
 
    def pointInCloseList(self, point):
        for node in self.closeList:
            if node.point == point:
                return True
        return False
 
    def pointInOpenList(self, point):
        for node in self.openList:
            if node.point == point:
                return node
        return None
 
    def endPointInCloseList(self):
        for node in self.openList:
            if node.point == self.endPoint:
                return node
        return None
 
    def searchNear(self, minF, offsetX, offsetY):
        """
        搜索节点周围的点
        :param minF:F值最小的节点
        :param offsetX:坐标偏移量
        :param offsetY:
        :return:
        """
        # 越界检测
        if minF.point.x + offsetX < 0 or minF.point.x + offsetX > self.map2d.w - 1 or minF.point.y + offsetY < 0 or minF.point.y + offsetY > self.map2d.h - 1:
            return
        # 如果是障碍,就忽略
        if self.map2d[minF.point.x + offsetX][minF.point.y + offsetY] != self.passTag:
            return
        # 如果在关闭表中,就忽略
        currentPoint = Point(minF.point.x + offsetX, minF.point.y + offsetY)
        if self.pointInCloseList(currentPoint):
            return
        # 设置单位花费
        if offsetX == 0 or offsetY == 0:
            step = 10
        else:
            step = 14
        # 如果不再openList中,就把它加入openlist
        currentNode = self.pointInOpenList(currentPoint)
        if not currentNode:
            currentNode = AStar.Node(currentPoint, self.endPoint, g=minF.g + step)
            currentNode.father = minF
            self.openList.append(currentNode)
            return
        # 如果在openList中,判断minF到当前点的G是否更小
        if minF.g + step < currentNode.g:  # 如果更小,就重新计算g值,并且改变father
            currentNode.g = minF.g + step
            currentNode.father = minF

    def start(self):
        """
        开始寻路
        :return: None或Point列表(路径)
        """
        # 判断寻路终点是否是障碍
        if self.map2d[self.endPoint.x][self.endPoint.y] != self.passTag:
            return None
 
        # 1.将起点放入开启列表
        startNode = AStar.Node(self.startPoint, self.endPoint)
        self.openList.append(startNode)
        # 2.主循环逻辑
        while True:
            # 找到F值最小的点
            minF = self.getMinNode()
            # 把这个点加入closeList中,并且在openList中删除它
            self.closeList.append(minF)
            self.openList.remove(minF)
            # 判断这个节点的上下左右节点
            self.searchNear(minF, 0, -1)
            self.searchNear(minF, 0, 1)
            self.searchNear(minF, -1, 0)
            self.searchNear(minF, 1, 0)
            # 判断是否终止
            point = self.endPointInCloseList()
            if point:  # 如果终点在关闭表中,就返回结果
                # print("关闭表中")
                cPoint = point
                pathList = []
                while True:
                    if cPoint.father:
                        # pathList.append(cPoint.point)
                        pathList.append([cPoint.point.y,cPoint.point.x])
                        cPoint = cPoint.father
                    else:
                        # print(pathList)
                        # print(list(reversed(pathList)))
                        # print(pathList.reverse())
                        return list(reversed(pathList))
            if len(self.openList) == 0:
                return None

pixwidth = 10.197194  #10.2
pixheight = 4.625010  #4.6

#将最慢算法的加速一下
@jit(nopython=True)
def _obstacleMap(map,obsize):
        '''
        给地图一个膨胀参数
        
        '''
        
        indexList = np.where(map == 1)#将地图矩阵中1的位置找到
        #遍历地图矩阵
          
        for x in range(map.shape[0]):
            for y in range(map.shape[1]):
                if map[x][y] == 0:
                    for ox,oy in zip(indexList[0],indexList[1]):
                        #如果和有1的位置的距离小于等于膨胀系数,那就设为1
                        distance = math.sqrt((x-ox)**2+(y-oy)**2)
                        if distance <= obsize:
                            map[x][y] = 1



class pathPlanning():
    def __init__(self):
        '''
        起点:[2,2]
        终点:[2,4]
        地图:(未知:-1,可通行:0,不可通行:1)


        返回的内容:[(2,4),(1,4),(0,3),(1,2),(2,2)]
        '''
        
        #初始化ROS节点
        rospy.init_node("Astar_globel_path_planning",anonymous=True)
        
        #将数据处理成一个矩阵(未知:-1,可通行:0,不可通行:1)
        self.doMap()
        #obsize是膨胀系数,是按照矩阵的距离,而不是真实距离,所以要进行一个换算
        self.obsize=7 #15太大了
        print("现在进行地图膨胀")
        ob_time = time.time()
        _obstacleMap(self.map,self.obsize)
        print("膨胀地图所用时间是:{:.3f}".format(time.time()-ob_time))

        
        #获取初始位置self.init_x,self.init_y
        self.getIniPose()
        #获取终点位置self.tar_x,self.tar_y
        self.getTarPose()
        print("已接收")

        # print(self.width,self.height)
        # print("起始点")
        # print(self.init_x,self.ros中init_y)
        # print(self.start_point)
        # print("目标点")
        # print(self.tar_x,self.tar_y)
        # print(self.start_point[0])
        # print(self.final_point)
        
        # #查看是否正确找到起点终点
        # map_test = self.map.copy()
        # map_test[self.start_point[1]][self.start_point[0]] = 1
        # map_test[self.final_point[1]][self.final_point[0]] = 1
        # plt.matshow(map_test, cmap=plt.cm.gray)
        # plt.show()

        #算法生成
        s_time = time.time()
        self.map2d=MapMatrix(self.map)
        #创建AStar对象,并设置起点终点
        aStar=AStar(self.map2d,Point(self.start_point[1],self.start_point[0]),Point(self.final_point[1],self.final_point[0]))
        #开始寻路
        self.pathList=aStar.start()
        #查误差
        # print("计算之后的终点")
        # print(pixwidth - self.pathList[-1][0]*self.resolution,self.pathList[-1][1]*self.resolution - pixheight)
        # print(self.worldToMap(pixwidth - self.pathList[-1][0]*self.resolution,self.pathList[-1][1]*self.resolution - pixheight))

        print("Astar算法所用时间是:{:.3f}".format(time.time()-s_time))

        #发布Astar算法
        self.sendAstarPath()
        
    
    # def obstacleMap(self,obsize):
    #     '''
    #     给地图一个膨胀参数
        
    #     '''
        
    #     indexList = np.where(self.map == 1)#将地图矩阵中1的位置找到
    #     #遍历地图矩阵
          
    #     for x in range(self.map.shape[0]):
    #         for y in range(self.map.shape[1]):
    #             if self.map[x][y] == 0:
    #                 for ox,oy in zip(indexList[0],indexList[1]):
    #                     #如果和有1的位置的距离小于等于膨胀系数,那就设为1
    #                     distance = math.sqrt((x-ox)**2+(y-oy)**2)
    #                     if distance <= obsize:
    #                         self.map[x][y] = 1
        
    def doMap(self):
        '''
            获取数据
            将数据处理成一个矩阵(未知:-1,可通行:0,不可通行:1)
        '''
        #获取地图数据
        self.OGmap = rospy.wait_for_message("/map",OccupancyGrid,timeout=None)
        #地图的宽度
        self.width = self.OGmap.info.width
        #地图的高度
        self.height = self.OGmap.info.height
        #地图的分辨率
        self.resolution = self.OGmap.info.resolution

        
        #获取地图的数据 可走区域的数值为0,障碍物数值为100,未知领域数值为-1
        mapdata = np.array(self.OGmap.data,dtype=np.int8)
        #将地图数据变成矩阵
        self.map = mapdata.reshape((self.height,self.width))

        #将地图中的障碍变成从100变成1
        self.map[self.map == 100] = 1
        #列是逆序的,所以要将列顺序
        self.map = self.map[:,::-1]
        
        # #查看地图数据存储格式
        # plt.matshow(self.map, cmap=plt.cm.gray)
        # plt.show()

    def getIniPose(self):
        '''
            获取初始坐标点
        '''
        self.IniPose = rospy.wait_for_message("/amcl_pose", PoseWithCovarianceStamped,timeout=None)
        self.init_x = self.IniPose.pose.pose.position.x
        self.init_y = self.IniPose.pose.pose.position.y
        #获取对于矩阵中的原始点位置
        self.start_point = self.worldToMap(self.init_x,self.init_y)


        self.init_quaternions_z = self.IniPose.pose.pose.orientation.z
        self.init_quaternions_w = self.IniPose.pose.pose.orientation.w
        
    def getTarPose(self):
        '''
            获取目标坐标点
        '''
        self.TarPose = rospy.wait_for_message("/move_base_simple/goal", PoseStamped,timeout=None)
        self.tar_x = self.TarPose.pose.position.x
        self.tar_y = self.TarPose.pose.position.y
        self.final_point = self.worldToMap(self.tar_x,self.tar_y)
        self.tar_quaternions_x = self.TarPose.pose.orientation.x
        self.tar_quaternions_y = self.TarPose.pose.orientation.y
        self.tar_quaternions_z = self.TarPose.pose.orientation.z
        self.tar_quaternions_w = self.TarPose.pose.orientation.w
        

    def sendAstarPath(self):
        AstarPath = rospy.Publisher("AstarPath",Path,queue_size=15)
        init_path = Path()

        #设置发布频率
        rate = rospy.Rate(200)
        
        for i in range(len(self.pathList)):

            init_path.header.stamp = rospy.Time.now()
            init_path.header.frame_id = "map"

            current_point = PoseStamped()
            current_point.header.frame_id = "map"
            current_point.pose.position.x = pixwidth - self.pathList[i][0]*self.resolution
            current_point.pose.position.y = self.pathList[i][1]*self.resolution - pixheight
            current_point.pose.position.z = 0
            #角度
            current_point.pose.orientation.x = 0
            current_point.pose.orientation.y = 0
            current_point.pose.orientation.z = 0
            current_point.pose.orientation.w = 1

            init_path.poses.append(current_point)
            #发布消息
            AstarPath.publish(init_path)

            rate.sleep()
            i += 1
        time.sleep(0.5)

    def worldToMap(self,x,y):
        #将rviz地图坐标转换为栅格坐标
        #这里10.2和-4.6需要自动添加,目前不知道怎么添加
        mx = (int)((pixwidth-x) /self.resolution)
        my = (int)(-(-pixheight-y) /self.resolution)
        return [mx,my]





if __name__ == "__main__":
    getmap = pathPlanning()

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-02-01 20:33:48  更:2022-02-01 20:34:57 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/16 1:17:45-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码