| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> Python知识库 -> Python 数据可视化神器—Pyecharts -> 正文阅读 |
|
[Python知识库]Python 数据可视化神器—Pyecharts |
前言 Echarts 是百度开源的一款数据可视化 JS 工具,数据可视化类型十分丰富,但是得通过导入 js 库在 Java Web 项目上运行。 作为工作中常用 Python 的选手,不能不知道这款数据可视化插件的强大。那么,能否在 Python 中也能用到 Echarts 的功能呢?寻找中惊喜地发现了 pyecharts,只需在python中安装该模块即可使用。 安装 常用的pip安装包一键安装pyecharts # pyecharts安装命令: python -m pip install pyecharts Python + pyecharts具体应用 结合工作中的项目数据,我选择了 test 项目需求中 hotel_code_new 为 CNSZVS_002,CWSWS_003 对应2019年12个月指标为 RNs 的数据做可视化展示与分析。 1.Hive数据库查询sql hive_sql内容如下 # sql中所使用的部分语法为hive sql中常规的语法,与mysql有所不同,请注意。 select rrrd1.hotel_code_new as hotel_code_new ,dda.natural_date as natural_date ,nvl(rrrd.room_nights, 0) as room_nights from ( select distinct substr(natural_dt,1,7) as natural_date from dws.dws_test_date_calendar where dt_year='2019' )dda left join (select 'CNSZVS_002' hotel_code_new UNION all select 'CWSWS_003' hotel_code_new )rrrd1 left join (select hotel_code_new ,substr(stay_date,1,7) as stay_date ,sum(number_of_room_nights) as room_nights from dwm.dwm_test_resvs_rom_daily_df where dt='2021-10-24' and hotel_code_new in(CNSZVS_002', 'CWSWS_003') and resv_status in('CHECKEDSSSIN','CHECKEDSSSOUT') and substr(stay_date,0,4) = '2019' group by hotel_code_new,substr(stay_date,1,7) )rrrd on dda.natural_date = rrrd.stay_date and rrrd1.hotel_code_new=rrrd.hotel_code_new order by rrrd.hotel_code_new; 2.Python代码实现—柱状图 from impala.dbapi import connect import warnings #数据仓库数据获取准备 def hive_connect(sql): warnings.filterwarnings('ignore') config_hive_beta = { 'host': '10.7.0.12', #hive的host地址 'port': 10000, #hive的端口号 'user': 'hive', #hive的username 'password': 'hive', #hive的password 'database': 'tmp', #hive中需要查询的数据库名 'auth_mechanism': 'PLAIN' #hive的hive-site.xml配置文件中获取 } conn = connect(**config_hive_beta) cursor = conn.cursor() cursor.execute(sql) hive_all_data = cursor.fetchall() return hive_all_data # all_data = hive_connect(hive_sql) # 通过调用hive_connect方法获取到的数据库查询结果数据如all_data列表所示 all_data = [('CNSZVS_002', '2019-01', 0), ('CNSZVS_002', '2019-02', 0), ('CNSZVS_002', '2019-03', 0), ('CNSZVS_002', '2019-04', 0), ('CNSZVS_002', '2019-05', 0), ('CNSZVS_002', '2019-06', 2353), ('CNSZVS_002', '2019-07', 2939), ('CNSZVS_002', '2019-08', 5148), ('CNSZVS_002', '2019-09', 3850), ('CNSZVS_002', '2019-10', 4973), ('CNSZVS_002', '2019-11', 5467), ('CNSZVS_002', '2019-12', 4742), ('CWSWS_003', '2019-01', 5914), ('CWSWS_003', '2019-02', 4434), ('CWSWS_003', '2019-03', 6003), ('CWSWS_003', '2019-04', 6611), ('CWSWS_003', '2019-05', 6586), ('CWSWS_003', '2019-06', 5840), ('CWSWS_003', '2019-07', 6624), ('CWSWS_003', '2019-08', 7001), ('CWSWS_003', '2019-09', 5792), ('CWSWS_003', '2019-10', 6898), ('CWSWS_003', '2019-11', 6944), ('CWSWS_003', '2019-12', 5404)] # 从pyecharts模块导入柱状图-Bar from pyecharts import Bar # 设置横轴行名,这里使用12个月份的英文简称 columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] # 分别新建2个空list用于存储每个月份对应的RNs的值 CNSZVS_002 = [] CWSWS_003 = [] for i in all_data: if i[0] == 'CNSZVS_002': CNSZVS_002.append(i[2]) elif i[0] == 'CWSWS_003': CWSWS_003.append(i[2]) else: pass # 设置柱状图的主标题与副标题 bar = Bar("柱状图", "Test需求—2019年的RNs") # 添加柱状图的数据及配置项-求平均值、最大值、最小值 bar.add("CNSZVS_002", columns, CNSZVS_002, mark_line=["average"], mark_point=["max", "min"]) bar.add("CWSWS_003", columns, CWSWS_003, mark_line=["average"], mark_point=["max", "min"]) # 在本py文件同级目录下生成名为render.html的本地文件(默认为.html文件) bar.render() # 也可设置成指定的路径用于保存html文件 #bar.render(r"D:bar_render.html") 柱状效果图展示 生成的柱状效果图是html格式的,可以在浏览器中打开查看,在浏览器中支持下载成图片格式到本地,并且点击图例即可置灰对应的图例,同时隐藏图例对应的柱状图数据,如下图所示。 3.Python代码实现—饼状图 注意:数据准备部分的代码与柱状图一样,这里只展示饼状图特有的代码 # 从pyecharts模块中导入饼图Pie from pyecharts import Pie # 设置主标题与副标题,标题设置居中,设置宽度为1000 pie = Pie("饼状图", "Test需求—2019年的RNs", title_pos='left', width=1000) # 使用add导入数据,设置坐标位置为【20,50】,上方的colums选项取消显示 pie.add("CNSZVS_002", columns, CNSZVS_002, center=[20, 50], is_legend_show=True) # 使用add导入数据,设置坐标位置为【75,50】,上方的colums选项正常显示 pie.add("CWSWS_003", columns, CWSWS_003, center=[75, 50], is_legend_show=False, is_label_show=True) # 保存图表 pie.render() 饼状效果图展示——隐藏所占百分比 饼状效果图展示——展示所占百分比 4.Python代码实现—箱型图 # 从pyecharts模块导入箱型图Boxplot from pyecharts import Boxplot boxplot = Boxplot("箱型图", "Test需求—2019年的RNs") x_axis = ['CNSZVS_002', 'CWSWS_003'] y_axis = [CNSZVS_002, CWSWS_003] # prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max] yaxis = boxplot.prepare_data(y_axis) boxplot.add("2019年RNs统计", x_axis, yaxis) boxplot.render() 箱型图效果展示 5.Python代码实现—折线图 from pyecharts import Line line = Line("折线图", "Test需求—2019年的RNs") # is_label_show属性是设置上方数据是否显示 line.add("CNSZVS_002", columns, CNSZVS_002, is_label_show=True) line.add("CWSWS_003", columns, CWSWS_003, is_label_show=True) line.render() 折线图效果展示 6.Python代码实现—雷达图 from pyecharts import Radar radar = Radar("雷达图", "Test需求—2019年的RNs") # 由于雷达图传入的数据得为多维数据,需要将list再进行list转换一次 CNSZVS_002 = [CNSZVS_002] CWSWS_003 = [CWSWS_003] # 设置column的最大值,为了雷达图更为直观,这里的月份最大值设置依据真实数据的值来设置,因此各个月份有所不同 schema_diff = [ ("Jan", 7000), ("Feb", 5000), ("Mar", 6500), ("Apr", 7000), ("May", 7000), ("Jun", 6200), ("Jul", 6800), ("Aug", 7200), ("Sep", 6000), ("Oct", 7300), ("Nov", 7500), ("Dec", 6000) ] # 传入坐标 radar.config(schema_diff) radar.add("CNSZVS_002", CNSZVS_002) # 一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色 radar.add("CWSWS_003", CWSWS_003, item_color="#1C86EE") radar.render() 雷达效果图展示 7.Python代码实现—散点图 from pyecharts import Scatter scatter = Scatter("散点图", "Test需求—2019年的RNs") # xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置 scatter.add("CWSWS_003&CNSZVS_002 RNs的散点分布", CNSZVS_002, CWSWS_003, xaxis_name="CNSZVS_002", yaxis_name="CWSWS_003", yaxis_name_gap=40) scatter.render() 散点图效果展示 总结
|
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/16 0:53:32- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |