自己电脑太low了,内存太少了。所以利用下colab的云端GPU来进行训练。 也可以租个服务器来训练,作为新手,我先来白嫖下免费的GPU吧。 在coalb新建一个笔记本,因为coalb中没法直接打开我们的yolov5文件,所以我们需要先将我们的文件压缩打包。在左侧上传我们的压缩文件,我这里是yolov5-6.0.zip ![在这里插入图片描述](https://img-blog.csdnimg.cn/659080d22ade4174ac14fe2d5024489e.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAU3Rhcl8u,size_15,color_FFFFFF,t_70,g_se,x_16) 然后我们进行解压 在代码区输入
!unzip /content/yolov5-6.0.zip -d /content/yolov5
/content/yolov5-6.0.zip 指的是我们压缩文件的路径
-d 后是我们解压文件的路径
有的时候我们解压后会多出一个文件,_MAXOSX,需要删除下,而且这个玩意没法直接删除,我们需要在代码区输入
!rm -rf /content/yolov5/__MAXOSX
![在这里插入图片描述](https://img-blog.csdnimg.cn/60072ae27db14963bb31c51e9f5f9187.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAU3Rhcl8u,size_12,color_FFFFFF,t_70,g_se,x_16) 然后我们现在操作是在yolov5这个文件夹下,我们需要进入yolov5中的yolov5-6.0这个文件夹下,在代码区输入
%cd /content/yolov5/yolov5-6.0
然后我们下载我们需要的一些包 一般colab上部分包他都安装好了,我们这个再安装一次。 有的博主是给我们写了requirements.txt文件的,所以我们直接
!pip install -r requirements.txt
添加插件tensorboard(可视化工具)
%load_ext tensorboard
tensorboard --logdir=runs/train
然后我们就可以运行我们的训练文件了
!python train.py
然后我们运行完的模型就保存在了runs/train中 ![在这里插入图片描述](https://img-blog.csdnimg.cn/483496de66514f748ceb80e135c2f2a3.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAU3Rhcl8u,size_14,color_FFFFFF,t_70,g_se,x_16)
|