1. 迭代法求解非线性方程组的原理
????????参考西安交大数值分析教材
?
?
?
?
?
?
?
?
?
?
2.?迭代法求解非线性方程组的计算过程
????????牛顿法求解非线性方程组的计算过程如下
?????????弦割法与牛顿法类似,弦割法将牛顿法中的偏导数用差商替代,即将上述牛顿法中的第(ii)步和第(iii)步转化为以下迭代格式
?
?????????布罗伊登法求解非线性方程组的计算过程如下
?3. 程序使用说明
????????程序使用方法为:(1)定义自变量;(2)使用(1)中的自变量定义非线性方程组列表;(3)给定初值,精度以及迭代次数;(4)调用方程netwon(),broyden(),string_cut(),分别对应牛顿法,布罗伊登法和弦割法。具体如下所示
4. python实现代码
?
'''
使用牛顿法、弦割法、布罗伊登法求解非线性方程组
'''
import sympy
import pprint
import numpy as np
#计算向量范数
def Norm2(p):
sum_of_p = sum([i ** 2 for i in p])
return sum_of_p ** 0.5
#牛顿法
def newton(A, x_0, args, prec=0.00000001, n=10):
funcs=sympy.Matrix(A)
args=args
jacobianMatrix=funcs.jacobian(args) #计算雅可比矩阵
#pprint.pprint(jacobianMatrix.inv())
x_0=sympy.Matrix(x_0)
x = args
x_pre = x_0
for k in range(0, n): #迭代求解
b = - funcs.subs(zip(x, x_pre)) #计算f(x【k】)
J = jacobianMatrix.subs(zip(x, x_pre)) #计算雅可比矩阵Jf(x【k】)
deltx = sympy.Matrix(J.inv() * b) #使用雅可比矩阵的逆求解deltx
x_new = x_pre + deltx #迭代跟新x
if Norm2(funcs.subs(zip(x, x_new))) < prec: #如果满足精度要求则返回
#pprint.pprint(x_new)
#print(k)
return([x_new,k])
x_pre = x_new
return("迭代次数较少,无法满足精度要求")
#弦割法
def string_cut(A, x_0, args, prec=0.00000001, n=10):
funcs = sympy.Matrix(A)
#args = args
h = 0.1 #设置h的大小
e = np.eye(len(A))*h
#pprint.pprint(e)
x_0 = sympy.Matrix(x_0)
x = args
x_pre = x_0
c=[]
for k in range(0,n):
for p in range(len(A)):
c.append([A[p].subs(zip(x, (x_pre + sympy.Matrix(e[j]))))
for j in range(0, len(A))])
fij = sympy.Matrix(c) #计算fij【k】
#pprint.pprint(fij)
b = funcs.subs(zip(x, x_pre)) #计算fi【k】
z = fij.inv() * b #求解z
deltx = h * z / (sum(z) - 1) #计算deltx
x_new = x_pre + deltx #更新x
if Norm2(funcs.subs(zip(x, x_new))) < prec: #满足精度要求则返回
#pprint.pprint(x_new)
#print(k)
return([x_new,k])
x_pre = x_new
c = []
return("迭代次数较少,无法满足精度要求")
def broyden(A, x_0, args, prec=0.00000001, n=10):
funcs = sympy.Matrix(A)
args = args
jacobianMatrix = funcs.jacobian(args)
x_0 = sympy.Matrix(x_0)
x = args
b = funcs.subs(zip(x, x_0))
J0 = jacobianMatrix.subs(zip(x, x_0))
x_1 = x_0 - J0.inv() * b
prec = prec
#以下得到两个初始迭代值和初始A【0】矩阵
x_pre = x_0
x_now = x_1
J = jacobianMatrix.subs(zip(x, x_pre)).inv() #A【0】的逆
#迭代计算
for k in range(0, n):
s = x_now - x_pre #计算s【k】
y = funcs.subs(zip(x, x_now)) - funcs.subs(zip(x, x_pre)) #计算y【k】
temp1 = (s - J * y) * s.T * J
temp2 = (s.T * J * y)
num = temp2 ** (-1)
e=np.eye(len(A))
n_num=np.array(num)
e_num=e*(n_num)
diag = sympy.diag(e_num)
temp = temp1 * diag #将除以一个数变为乘其逆的对角单位矩阵
J_new = J + temp #得到A【k】的逆
x_new = x_now - J_new * funcs.subs(zip(x, x_now)) #更新x的值
if Norm2(funcs.subs(zip(x, x_new))) < prec: #如果满足精度要求则返回
#pprint.pprint(x_new)
#print(k)
return [x_new, k]
x_pre = x_now
x_now = x_new
J = J_new
return ("迭代次数较少,无法满足精度要求")
if __name__ == "__main__":
#---------------------------计算实习7.3.1-------------------------------
x1, x2, x3 = sympy.symbols("x1 x2 x3") #定义自变量
args = sympy.Matrix([x1, x2, x3]) #定义自变量参数矩阵
#定义非线性方程组列表
A = [x1 ** 2 + x2 ** 2 + x3 ** 2 - 1.0,
2 * x1 ** 2 + x2 ** 2 - 4 * x3 ** 2,
3 * x1 ** 2 - 4 * x2 ** 2 + x3 ** 2]
x_0 = [1.0, 1.0, 1.0] #设置初始向量
prec = 0.00000001 #设置精度
n=20 #设置迭代次数
p = newton(A, x_0, args, prec, n) #牛顿法求解
pprint.pprint(p)
p = broyden(A, x_0, args, prec, n) #布罗伊登法求解
pprint.pprint(p)
p = string_cut(A, x_0, args, prec, n) #弦割法求解
pprint.pprint(p)
#----------------------------计算实习7.3.2-------------------------------
# x1, x2 = sympy.symbols("x1 x2")
# args = sympy.Matrix([x1, x2])
# A=[sympy.cos(x1**2+0.4*x2)+x1**2+x2**2-1.6, 1.5*x1**2-1/0.36*x2**2-1.0]
# x_0=[1.04, 0.47]
# prec = 0.00000001
# n=20
# p = newton(A, x_0, args, prec, n)
# pprint.pprint(p)
# p = broyden(A, x_0, args, prec, n)
# pprint.pprint(p)
# p = string_cut(A, x_0, args, prec, n)
# pprint.pprint(p)
?
|