IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> 在Ubuntu服务器上搭建深度学习环境(Ubuntu 18.04+Anaconda3+pytorch+PyCharm) -> 正文阅读

[Python知识库]在Ubuntu服务器上搭建深度学习环境(Ubuntu 18.04+Anaconda3+pytorch+PyCharm)

基于Ubuntu 18.04的深度学习环境搭建(Ubuntu18.04+Anaconda3+pytorch+PyCharm)

本地下载了mobaXterm作为终端连接工具,连接实验室的gpu服务器,这里基于服务器的18.04系统安装了anaconda3,创建了虚拟环境,安装pytorch,以及安装IDE PyCharm。
终端登录了自己的帐号之后就进入了home/username/这个文件夹下面。

1.下载安装Anaconda3

首先在服务器上home/username/文件夹下创建一个新的文件夹Downloads,下载Anaconda放到Downloads文件夹下面,这里推荐从清华镜像源下载,速度更快,这里下载的是下面这个,
在这里插入图片描述
cd Downloads
在Downloads文件夹下使用如下命令下载:
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.11-Linux-x86_64.sh
wget命令是Linux系统用于从Web下载文件的命令行工具,支持 HTTP、HTTPS及FTP协议下载文件。
在这里插入图片描述

下载完成之后使用如下命令进行安装,
bash Anaconda3-2021.11-Linux-x86_64.sh
在这里插入图片描述
下面提示同意许可协议,输入yes,
以及是否要安装在默认路径下还是自定义安装路径,这里选择自定义安装路径,
在这里插入图片描述
下面询问Do you wish the installer to initialize Anaconda3 by running conda init? [yes|no],这里是把conda添加到PATH中,让你能使用conda命令,所以这个直接yes。
这里选择了yes后续就不需要手动修改.bashrc 文件配置环境变量了
旧版本的会问Do you wish the installer to initialize Anaconda3 in your /username/.bashrc ? [yes|no],也是选择yes即可。

在这里插入图片描述
出现上面的信息说明安装完成。
检查一下是否安装成功:
最好关闭session重新连接一下,再打开之后就可以看见前面多了一个(base),
输入python,如下可以看到anaconda里面的python版本是3.9.7,anaconda安装成功!
在这里插入图片描述
附上之前版本配置环境变量的操作,参考:(我们这里上面已经自动配置了环境变量)
在这里插入图片描述
在这里插入图片描述

2.利用conda创建虚拟环境

配置清华镜像源,加快下载速度,

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

在这里插入图片描述
创建虚拟环境,虚拟环境的python版本选择3.7,base环境的python版本是3.9,
conda create -n pytorch-gpu python=3.7
在这里插入图片描述
创建成功之后,查看环境列表,可以看到base环境和刚刚创建的虚拟环境pytorch-gpu,
conda env list
在这里插入图片描述
激活虚拟环境pytorch-gpu,可以看到其python版本为3.7,
在这里插入图片描述

3.在上面创建的虚拟环境中搭建pytorch-gpu框架

首先去pytorch官网查看Linux系统,CUDA10.2对应的pytorch,torchversion使用conda安装的安装命令,这里是
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
验证pytorch是否安装成功,以及是否可以使用GPU进行计算
如果输出的结果为false,则表示pytorch无法使用GPU资源进行运算,需要自寻方法解决。
如果输出的结果为true,则表示pytorch build for GPU搭建成功。
在这里插入图片描述
pytorch安装成功!

4.安装PyCharm

Pycharm是一款来自JetBrains公司的强大的Python IDE,它可以为每个创建的project调用指定的conda虚拟环境(如上文创建的名为pytorch-gpu的虚拟环境)python解释器。
下载PyCharm, PyCharm官网链接

首先关闭虚拟环境,返回base,
conda deactivate
在这里插入图片描述
在本地下载好pycharm-community-2020.1.4.tar.gz,拖拽上传至服务器的Downloads文件夹下,使用如下命令解压安装包,
tar xzvf pycharm-community-2021.3.3.tar.gz
在这里插入图片描述
解压完成后,继续输入以下指令, 即可打开pycharm。
cd pycharm-community-2021.3.3/bin/
sh pycharm.sh
在这里插入图片描述
在这里插入图片描述
经过一些初始化设定后,进入settings -> project ____ -> Python Interpreter,
点击右边的小齿轮?,add Python Interpreter -> conda environment -> existing environment,选择创建好的conda 虚拟环境。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
关闭pycharm之后就酱紫了
在这里插入图片描述
关闭session
在这里插入图片描述

必要步骤基本已经完成啦!

总结

参考网上大佬的教程,链接:https://zhuanlan.zhihu.com/p/223001118
在这里插入图片描述
这里服务器上师兄已经配置好了cuda(装的是cuda10.2)和cuDNN,所以省略了这步,需要做的就是安装anaconda,创建虚拟环境,在虚拟环境中搭建pytorch for gpu框架,最后安装PyCharm。
记录一下下,以后用的时候可以省点时间呜呜呜

主要参考:
https://zhuanlan.zhihu.com/p/223001118
https://blog.csdn.net/qq_43082542/article/details/121166968
https://blog.csdn.net/wuprogrammer/article/details/108928990
https://blog.csdn.net/weixin_45591044/article/details/104312338
https://blog.csdn.net/qq_15192373/article/details/81091098

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-04-14 23:50:39  更:2022-04-14 23:53:35 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/28 22:11:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计