IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> python多进程协作简单模拟 -> 正文阅读

[Python知识库]python多进程协作简单模拟

由于python多线程无法发挥多核的作用,因此当计算量很大的时候就需要考虑多进程。

只不过多进程比较麻烦一些,进程中通信向来是一件麻烦事。

python提供了multiprocessing 模块,应该会提供不少便利

假设我们做量化交易需要运行一个算法,针对一只票每运行一次需要30秒,运行完成将结果作为一个因子交给另一个计算模块运行,最后将计算结果统计出来。如果只运行一只票问题不大,大不了等一下就好,同时运行10票的话就很有必然考虑多进程以加快速度。

pro_queue为生产进程的数据队列,生产进程完成生产后将自己相关数据装产pro_queue中
calc_queue为计算进程的数据队列,计算进程先将生产进程的数据通过参数传递的方式获取到,然后进行计算,并将计算结果存入calc_queue中
主进程在最后不断获取计算进程的计算结果,并将其累加,最终获取到一个总的计算结果

生产进程:

def func_a(i, p: queues):
    print(F"第{i}个生产进程: 进程号:{os.getpid()},开始...")
    time.sleep(random.randint(1, 5))
    result = random.randint(50, 100)
    print(F"第{i}个生产进程: 完成。生产结果[{result}]。")
    p.put((i, os.getpid(), result))

计算进程:

def func_b(i, data, q: queues):
    print(F"第{i}个计算进程: 进程号:{os.getpid()}, 数据源{data[0]}:{data[1]}:{data[2]},开始...")
    time.sleep(random.randint(1, 3))
    result = data[2] * 100
    print(F"第{i}个计算进程: 完成。计算结果【{result}】")
    q.put(result)

程序一开始先将生产进程启动起来:其中process_num表示同时启动多少个生产进程

    for i in range(process_num):
        p = Process(target=func_a, args=(i, pro_queue,))
        p.start()

然后不停等待生产进程的结果,每等到一个结果就启动一个计算进程

    for i in range(process_num):
        data = pro_queue.get()
        p = Process(target=func_b, args=(i, data, calc_queue))
        p.start()

最后就是等待计算进程的计算结果

    s = 0
    for i in range(process_num):
        s += calc_queue.get()
    print(F"所有计算完成,总结果:{s}")

补上程序一开始的两个队列的申明:

import multiprocessing
import time
from multiprocessing import Process
from multiprocessing import queues
import random
import os
    
    pro_queue = queues.Queue(ctx=multiprocessing)
    calc_queue = queues.Queue(ctx=multiprocessing)
    process_num = 5

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章           查看所有文章
加:2022-04-22 18:32:27  更:2022-04-22 18:36:46 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/15 17:36:38-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码