- 滑动拼图验证码可以算是滑块验证码的进阶版本,其验证机制相对复杂。本节将介绍两种滑动拼图验证码:初级版和高级版本。
2.4.1 初级版滑块拼图验证码
- 初级版滑动拼图验证码是在普通滑块验证码的基础上增加了随机的滑动距离,用户需要根据拼图的缺口位置来决定滑块的滑动位置。
- 如下左图所示为一个滑块拼图验证码的起始状态,注意此时还没有显示拼图和缺口。单击滑块后就会出现拼图和缺口,如下右图所示。之后会利用这一特性来找到拼图和缺口的位置。
- 下面开始编写代码。首先用Selenium打开网页,代码如下:
from selenium import webdriver
browser =webdriver.Chrome()
url = r'D:\works\python_crawl1\《Python爬虫(进阶与进通)》代码汇总\2.验证码反爬\4.滑动拼图验证码\滑动拼图验证码初级\index.html'
browser.get(url)
- 然后定位滑块并模拟单击滑块,让拼图和缺口显现出来。虽然此时单击滑块会显示验证失败,但这是为了帮助我们获取拼图和缺口的真实位置,以计算滑块需要滑动的距离,代码如下:
slider = browser.find_element_by_xpath('//*[@id="slideBtn"]')
slider.click()
time.sleep(3)
- 接着需要找到缺口的位置,初级版滑动拼图验证码可以直接在网页源代码中找到。如下图所示,用元素定位工具选中缺口,在网页源代码中查看缺口的left属性值,即缺口的左边界到整张图片的左边界的距离,这里为135像素。
- 如下图所示,用同样的方法查看拼图的left属性值,即拼图的左边界到整张图片的左边界的距离,这里为2像素。
- 因为拼图的初始left属性值始终为2像素,所以只需要提取缺口的left属性值。这里用正则表达式来提取,代码如下:
import re
data = browser.page_source
p_qk = '<div class="slide-box-shadow".*?left: (.*?)px'
qk_left = re.findall(p_qk,data,re.S)
- 获得qk_left如下:
- 将缺口和拼图的left属性值相减,就可以得到滑块需要滑动的距离,代码如下:
distance = float(qk_left[0]) - float(2)
- 计算结果如下:
- 计算出滑动距离后,用2.3节讲解的方法进行模拟滑动即可,代码如下:
action = webdriver.ActionChains(browser)
action.click_and_hold(slider).perform()
action.move_by_offset(distance,0)
action.release().perform()
import time
from selenium import webdriver
browser =webdriver.Chrome()
url = r'D:\works\python_crawl1\《Python爬虫(进阶与进通)》代码汇总\2.验证码反爬\4.滑动拼图验证码\滑动拼图验证码初级\index.html'
browser.get(url)
slider = browser.find_element_by_xpath('//*[@id="slideBtn"]')
slider.click()
time.sleep(3)
data = browser.page_source
p_qk = '<div class="slide-box-shadow".*?left: (.*?)px'
qk_left = re.findall(p_qk,data,re.S)
print(qk_left)
distance = float(qk_left[0]) - float(2)
print(distance)
action = webdriver.ActionChains(browser)
action.click_and_hold(slider).perform()
action.move_by_offset(distance,0)
action.release().perform()
补充知识点
- 如果不希望滑动得太快,可以将滑动距离分为3段,让滑块分3次滑动,每次滑动后等待一定时间,代码如下:
x1 = distance / 3
x2 = x1
x3 = distance - x1 - x2
action.move_by_offset(x1,0)
time.sleep(1)
action.move_by_offset(x2,0)
time.sleep(1)
action.move_by_offset(x3,0)
time.sleep(1)
action.release().perform()
2.4.2 高级版滑动拼图验证码
- 初级版滑动拼图验证码将拼图和缺口的位置都写在网页源代码中,我们可以直接根据left属性值计算滑动距离,从而通过验证。而高级版滑动拼图验证码将缺口融入背景图,我们无法在网页源代码中找到拼图和缺口的位置,这就为这种验证码的模拟验证增加了不小的难度。
- 人类是通过对比无缺口的图像和有缺口的图像,从而计算出滑块需要滑动的距离。在命令行窗口中执行命令“pip install pillow”即可安装PIL库。
- 首先用Selenium库打开网页,代码如下:
from selenium import webdriver
browser = webdriver.Chrome()
url = r'D:\works\python_crawl1\《Python爬虫(进阶与进通)》代码汇总\2.验证码反爬\4.滑动拼图验证码\滑动拼图验证码高级\index.html'
browser.get(url)
- 通过XPath表达式定位验证码原始图片,截图并保存,代码如下:
browser.find_element_by_xpath('//*[@id="jigsawCanvas"]').screenshot('origin.png')
- 截取到的无缺口图像如下图所示:
- 接着模拟单击滑块,会出现缺口,再次截图并保存,代码如下:
slider = browser.find_element_by_xpath('//*[@id="jigsawCircle"]')
slider.click()
browser.find_element_by_xpath('//*[@id="jigsawCanvas"]').screenshot('after.png')
- 截取到的有缺口图像如下图所示:
- 可以看到,无缺口图像和有缺口图像知识缺口处不同,其他地方完全相同。对比两幅图像的像素,将不同的像素找出来,就能知道缺口的位置。PIL库提供的ImageChops模块可以对比两幅图像的异同,并给出缺口的位置。通过如下代码从PIL库中导入需要使用的模块:
from PIL import Image,ImageChops
- 用Image模块中的open()函数打开要对比的两张截图,代码如下:
image_a = Image.open('origin.png').convert('RGB')
image_b = Image.open('after.png').convert('RGB')
- 接着用ImageChops模块中的difference()函数对比两张截图的像素,并获取不同之处的坐标值(注意,这种验证码的缺口位置每次都会变化,所以每次获得的坐标值也不一样)代码如下:
x = ImageChops.difference(image_a,image_b).getbbox()
print(x)
(261, 21, 313, 72)
- getbbox()函数会以元组的形式返回缺口的一组坐标值。
distance = x[0]
distance
- 接着用开发者工具查看白色圆角矩形的left属性值,也就是圆角矩形的左边界到图像的左边界的距离,如下图所示:
- 将前面获取的两个距离相减,就是滑块需要移动的距离。下面来移动滑块,代码如下:
action = webdriver.ActionChains(browser)
action.click_and_hold(slider).perform()
action.move_by_offset(distance-10,0)
action.release().perform()
from selenium import webdriver
import time
from PIL import Image,ImageChops
browser = webdriver.Chrome()
url = r'D:\works\python_crawl1\《Python爬虫(进阶与进通)》代码汇总\2.验证码反爬\4.滑动拼图验证码\滑动拼图验证码高级\index.html'
browser.get(url)
time.sleep(2)
browser.find_element_by_xpath('//*[@id="jigsawCanvas"]').screenshot('origin.png')
slider = browser.find_element_by_xpath('//*[@id="jigsawCircle"]')
slider.click()
browser.find_element_by_xpath('//*[@id="jigsawCanvas"]').screenshot('after.png')
image_a = Image.open('origin.png').convert('RGB')
image_b = Image.open('after.png').convert('RGB')
x = ImageChops.difference(image_a,image_b).getbbox()
print(x)
distance = x[0]
distance
action = webdriver.ActionChains(browser)
action.click_and_hold(slider).perform()
action.move_by_offset(distance-10,0)
action.release().perform()
- 运行结果如下,可以看到成功地通过了验证
|