IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> Python——TensorBaord深度学习训练过程可视化(数值+图像) -> 正文阅读

[Python知识库]Python——TensorBaord深度学习训练过程可视化(数值+图像)

本文主要是以语义分割模型为例进行后处理操作以及图像可视化。

0.TensorBoard可视化效果

在这里插入图片描述在这里插入图片描述

1. TensorBoard可视化配置

(1)TensorBoard初始化

from tensorboardX import SummaryWriter
writer = SummaryWriter(logdir=args.logdir)

(2)数值可视化

  • 使用writer.add_scalar()函数:
def add_scalar(
      self,
      tag: str,
      scalar_value: Union[float, numpy_compatible],
      global_step: Optional[int] = None,
      walltime: Optional[float] = None,
      display_name: Optional[str] = "",
      summary_description: Optional[str] = ""):
	  """Add scalar data to summary.
	
	  Args:
	      tag: Data identifier
	      scalar_value: Value to save, if string is passed, it will be treated
	          as caffe blob name.
	      global_step: Global step value to record
	      walltime: Optional override default walltime (time.time()) of event
	      display_name: The title of the plot. If empty string is passed,
	        `tag` will be used.
	      summary_description: The comprehensive text that will showed
	        by clicking the information icon on TensorBoard.
	  """

在训练过程中,直接加入即可:

writer.add_scalar('train/step_time', batch_time, global_step)

(3)图像可视化

  • 使用writer.add_image()torchvision.utils.make_grid()函数实现:
    • torchvision.utils.make_grid()用来将Tensor或者是图像列表转换为一个可以直接被writer.add_image()使用的图像;
    • writer.add_image()torchvision.utils.make_grid()合成的图像进行可视化操作。
def make_grid(
    tensor: Union[torch.Tensor, List[torch.Tensor]],
    nrow: int = 8,
    padding: int = 2,
    normalize: bool = False,
    value_range: Optional[Tuple[int, int]] = None,
    scale_each: bool = False,
    pad_value: int = 0,
    **kwargs
) -> torch.Tensor:
    """Make a grid of images.

    Args:
        tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
            or a list of images all of the same size.
        nrow (int, optional): Number of images displayed in each row of the grid.
            The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
        padding (int, optional): amount of padding. Default: ``2``.
        normalize (bool, optional): If True, shift the image to the range (0, 1),
            by the min and max values specified by :attr:`range`. Default: ``False``.
        value_range (tuple, optional): tuple (min, max) where min and max are numbers,
            then these numbers are used to normalize the image. By default, min and max
            are computed from the tensor.
        scale_each (bool, optional): If ``True``, scale each image in the batch of
            images separately rather than the (min, max) over all images. Default: ``False``.
        pad_value (float, optional): Value for the padded pixels. Default: ``0``.
    """
def add_image(
    self,
    tag: str,
    img_tensor: numpy_compatible,
    global_step: Optional[int] = None,
    walltime: Optional[float] = None,
    dataformats: Optional[str] = 'CHW'):
	"""Add image data to summary.
	
	Note that this requires the ``pillow`` package.
	
	Args:
	    tag: Data identifier
	    img_tensor: An `uint8` or `float` Tensor of shape `
	        [channel, height, width]` where `channel` is 1, 3, or 4.
	        The elements in img_tensor can either have values
	        in [0, 1] (float32) or [0, 255] (uint8).
	        Users are responsible to scale the data in the correct range/type.
	    global_step: Global step value to record
	    walltime: Optional override default walltime (time.time()) of event.
	    dataformats: This parameter specifies the meaning of each dimension of the input tensor.
	Shape:
	    img_tensor: Default is :math:`(3, H, W)`. You can use ``torchvision.utils.make_grid()`` to
	    convert a batch of tensor into 3xHxW format or use ``add_images()`` and let us do the job.
	    Tensor with :math:`(1, H, W)`, :math:`(H, W)`, :math:`(H, W, 3)` is also suitible as long as
	    corresponding ``dataformats`` argument is passed. e.g. CHW, HWC, HW.
	"""

一般用法如下:

# 
post_img = imgs.cpu()[0]
# get softmax output from model
semantic = torch.max(semantic, 1)[1].detach().cpu().numpy()
# post process
post_predict_img = decode_seg_map_sequence(semantic)[0]
semantic_gt = torch.max(semantic_gt, 1)[1].detach().cpu().numpy()
post_gt_img = decode_seg_map_sequence(semantic_gt)[0]
# make grids and add images
grid_image = make_grid(, 3, normalize=True)
writer.add_image('Image', grid_image, counter)
grid_image = make_grid([post_predict_img], 3, normalize=True, value_range=(0, 1))
writer.add_image('Predicted_label', grid_image, counter)
grid_image = make_grid([post_gt_img], 3, normalize=True, value_range=(0, 1))
writer.add_image('Groundtruth_label', grid_image, counter)

后处理

label_colors = np.array([
        [255, 255, 255], # 白色
        [128, 64, 128],
        [244, 35, 232],
        [70, 70, 70],
        [102, 102, 156],
        [190, 153, 153],
        ])

def decode_segmap(mask):
    r = mask.copy()
    g = mask.copy()
    b = mask.copy()
    rgb = np.ones((mask.shape[0], mask.shape[1], 3)) # 创建一个全白矩阵(保证没类别的地方都是白色,方便查看效果)
    for idx, color in enumerate(label_colors):
        r[r == idx] = color[0]
        g[g == idx] = color[1]
        b[b == idx] = color[2]
    
    rgb[:, :, 0] = r / 255.0
    rgb[:, :, 1] = g / 255.0
    rgb[:, :, 2] = b / 255.0
    return rgb.astype(np.float)

def post_process(semantic):
    '''
    imgs (list): [B, C, W, H]
    semantic_res (list): [B, N, W, H]
    '''
    B, W, H = semantic.shape
    # 遍历第一维(batch size)
    mask_images = np.zeros(shape=(B,W, H,3))
    for i in range(semantic.shape[0]):
        mask_images[i] = decode_segmap(semantic[i]) # 将mask合成为rgb图  
    return mask_images

def decode_seg_map_sequence(semantic):
    '''
    Args:
        semantic (Tensor): [B,N,W,H]
        semantic_gt (Tensor): [B,N,W,H]
    Return:
        - semantic (Tensor): [B,3,W,H]
    '''
    masks = post_process(semantic)
    semantic = torch.from_numpy(np.array(masks).transpose([0, 3, 1, 2]))
    return semantic
  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-05-08 08:03:10  更:2022-05-08 08:04:54 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/15 15:58:18-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码