IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> 2022-5-第二周日报 -> 正文阅读

[Python知识库]2022-5-第二周日报

2022/5/9

1 2048

修改和优化代码。

 def fill_grid_2(self, fill_steps, nums_list, difficulty_level_changge, num_path_last, now_num_path):

        num_max = np.max(self.Matrics)
        min = auto.matrix_min(self.Matrics)
        if np.log2(num_max) - np.log2(min) > 7:
            nums_list = [min, min*2, min*4, min*8, min*16, min*32]
        if len(nums_list) < 6 :
            nums_list = [min, min*2, min*4, min*8, min*16, min*32]

        # 随机填充
        if difficulty_level_changge == 1:
            self.random_num_list.append(self.random_num_list[-1]*2)
        length = len(nums_list)
        if len(fill_steps) > 4:
            random_list = fill_steps[0:len(fill_steps) - 4]
            control_list = fill_steps[len(fill_steps) - 4:]

            for i, j in random_list:
                new_number_index = random.randint(0, length - 1)
                new_number = nums_list[new_number_index]
                self.Matrics[i][j] = new_number
        else:
            control_list = fill_steps
        all_matrix_control_action = auto.all_action_numlist(nums_list, len(control_list))  # 所有动作
        index = 0
        socre = 0
        total_num_path = []
        total_smooth = []
        total_num = []
        total_num_value = []
        total_mat_score = []
        total_mat_score_less = []
        total_mat_score_bigger = []

        for i in range(len(all_matrix_control_action)):
            mat = self.Matrics.copy()
            mat = auto.matrix_action_pad(mat, control_list, all_matrix_control_action[i])
            # num_path = auto.feature_score(mat)
            smooth, num_path = auto.matrix_smooth(mat)
            num_1 = 0
            num_2 = 0
            for j in range(len(all_matrix_control_action[i])):
                if np.sum(np.where(self.Matrics == all_matrix_control_action[i][j])[0]) == 0:
                    num_1 = num_1
                else:
                    num_1 = num_1 + (25 - len(control_list)) / np.sum(
                        np.where(self.Matrics == all_matrix_control_action[i][j])[0])  # 少的棋子
                num_2 = num_2 + np.max(self.Matrics) / all_matrix_control_action[i][j]  # 小的棋子

            total_num.append(num_1)
            total_num_value.append(num_2)
            total_num_path.append(num_path)
            total_smooth.append(smooth)
        for i in range(len(all_matrix_control_action)):
            mat = self.Matrics.copy()
            mat = auto.matrix_action_pad(mat, control_list, all_matrix_control_action[i])

            if auto.feature_score(mat) < now_num_path:  # auto.matrix_smooth(mat) <= self.smooth and
                mat_socre = 0.3 * auto.Standardization(total_num_path, i) + 0.8 * auto.Standardization(
                    total_smooth,
                    i) + 0.3 * auto.Standardization(
                    total_num, i) + 0.2 * auto.Standardization(total_num_value, i)
                # mat_socre = total_num_path[i] + total_smooth[i] + total_num[i] + 2 * total_num_value[i]
                total_mat_score.append((mat_socre, i))
                total_mat_score_less.append((mat_socre, i))
            elif auto.feature_score(mat) >= now_num_path:
                mat_socre = 0.3 * auto.Standardization(total_num_path, i) + 0.8 * auto.Standardization(
                    total_smooth,
                    i) + 0.3 * auto.Standardization(
                    total_num, i) + 0.2 * auto.Standardization(total_num_value, i)
                total_mat_score.append((mat_socre, i))
                # mat_socre = total_num_path[i] + total_smooth[i] + total_num[i] + 2 * total_num_value[i]
                total_mat_score_bigger.append((mat_socre, i))
        total_mat_score_bigger.sort()
        total_mat_score_less.sort()
        # 难度控制
        if difficulty_level_changge == 1:  # 提升难度
            if len(total_mat_score_less) != 0:
                index = total_mat_score_less[-1][1]
            else:
                index = total_mat_score_bigger[0][1]

        elif difficulty_level_changge != 1:
            if len(total_mat_score_bigger) != 0:
                index = total_mat_score_bigger[0][1]
            else:
                index = total_mat_score_less[-1][1]

        auto.matrix_action_pad(self.Matrics, control_list, all_matrix_control_action[index])

        print('--------------------------------------------')
        print('上一步连接性:', num_path_last)
        print('当前连接性:', auto.feature_score(self.Matrics))
def matrix_smooth(mat):
    mat_index = np.array([[0] * 5] * 5)
    num = 0
    smooth = 0
    for i in range(mat.shape[0]):
        for j in range(mat.shape[1]):
            smooth1, num1, mat_index = matrix_move(mat, i, j, 1, mat_index)
            smooth2, num2, mat_index = matrix_move(mat,  i, j, 2, mat_index)
            smooth3, num3, mat_index = matrix_move(mat, i, j, 3, mat_index)
            smooth = smooth - smooth1 - smooth2 - smooth3
            num = num + num1 + num2 + num3
    return smooth, num

0 2022/5/10

1 2048

优化代码之后,可控制的数字增加到了5个。

2 联邦学习

2.1 复现联邦学习FedAvg

model


from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation,Flatten
from keras.models import model_from_json
import tensorflow as tf


class Model:
    def __init__(self):
        self.model = Sequential()
        self.model.add(Flatten())
        self.model.add(Dense(128, activation='relu'))
        self.model.add(Dense(10, activation='softmax'))
        self.model.compile(optimizer='adam',
                           loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                           metrics=['accuracy'])

    def saveModel(self):
        model_json = self.model.to_json()
        with open("model.json", "w") as json_file:
            json_file.write(model_json)
        # serialize weights to HDF5
        self.model.save_weights("model.h5")
        print("Saved model to disk")

    def loadModel(self):
        json_file = open('model.json', 'r')
        loaded_model_json = json_file.read()
        json_file.close()
        loaded_model = model_from_json(loaded_model_json)
        # load weights into new model
        loaded_model.load_weights("model.h5")
        print("Loaded model from disk")
        loaded_model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
        return loaded_model

    def run(self, X, Y, load=True):
        if (load):
            self.model = self.loadModel()
        self.model.fit(X, Y, epochs=5)

    def evaluate(self, X, Y,  verbose=2):
        return self.model.evaluate(X, Y, verbose=verbose)

    def loss(self, X, Y):
        return self.model.evaluate(X, Y)[0]

    def predict(self, X):
        return self.model.predict(X)

    def getWeights(self):
        return self.model.get_weights()

    def setWeights(self, weight):
        self.model.set_weights(weight)

data

from tensorflow.python.keras.datasets import cifar10, mnist, fashion_mnist


def Mnist_data():
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(-1, 28 * 28) / 255
    x_test = x_test.reshape(-1, 28 * 28) / 255
    return x_train, y_train, x_test, y_test

def generate_client_data(num_clients=10):
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(-1, 28 * 28) / 255
    x_test = x_test.reshape(-1, 28 * 28) / 255
    data = list(zip(x_train, y_train))
    size = len(data) // num_clients
    shards = [data[i:i+size] for i in range(0, size * num_clients, size)]
    return data, shards, x_test, y_test

# if __name__ == '__main__':
#     data, shards, x_test, y_test = generate_client_data(3)
#     print(shards[0])


aggregater

import numpy as np


class FedAvg:
    def __init__(self, global_model, different_client_values, client_count):
        global_weights = np.array(global_model.getWeights())
        for i in range(len(different_client_values)):
            global_weights -= different_client_values[i] / client_count
        global_model.setWeights(global_weights)





main

import numpy as np

import data
import model
from tensorflow import keras
import tensorflow as tf
import aggregator
if __name__ == '__main__':
    data, shards, x_test, y_test = data.generate_client_data(4)
    model1 = model.Model()
    model2 = model.Model()
    model3 = model.Model()

    global_model = model.Model()
    x, y = zip(*shards[0])
    x_train = np.array(x)
    y_train = np.array(y)
    # global_model.run(x_train, y_train, load=False)



    x_1, y_1 = zip(*shards[1])
    x_1 = np.array(x_1)
    y_1 = np.array(y_1)
    x_2, y_2 = zip(*shards[2])
    x_2 = np.array(x_2)
    y_2 = np.array(y_2)
    x_3, y_3 = zip(*shards[3])
    x_3 = np.array(x_3)
    y_3 = np.array(y_3)

    a_0 = np.argmax(global_model.predict(x_3[0:784]))
    global_model.saveModel()
    a_1 = np.argmax(model1.predict(x_3[0:784]))
    a_2 = np.argmax(model2.predict(x_3[0:784]))
    a_3 = np.argmax(model3.predict(x_3[0:784]))

    model1.setWeights(global_model.getWeights())
    model2.setWeights(global_model.getWeights())
    model3.setWeights(global_model.getWeights())

    model1.run(x_1, y_1)
    model2.run(x_2, y_2)
    model3.run(x_3, y_3)

    client_difference_value = [np.array(global_model.getWeights()) - np.array(model1.getWeights()),
                               np.array(global_model.getWeights()) - np.array(model2.getWeights()),
                               np.array(global_model.getWeights()) - np.array(model3.getWeights())]
    fedavg = aggregator.FedAvg(global_model, client_difference_value, 3)
    global_model.saveModel()
    test_loss, test_acc = global_model.evaluate(x_test, y_test, verbose=2)
    print('\nTest accuracy:', test_acc)













  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-05-11 16:25:25  更:2022-05-11 16:25:40 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/27 19:54:39-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计