IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> 使用 MMDetection训练自己的数据集(Colab版) -> 正文阅读

[Python知识库]使用 MMDetection训练自己的数据集(Colab版)

使用指南


挂载谷歌云盘
from google.colab import drive
drive.mount('/content/drive')

确认连到GPU

import tensorflow as tf

device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
  raise SystemError('没有发现GPU device')
print('Found GPU at: {}'.format(device_name))
# Found GPU at: /device:GPU:0

查看显卡

!/opt/bin/nvidia-smi

安装OpenMMLab的依赖

!pip install openmim
!mim install mmdet

检查是否安装依赖完成

from mmcv.runner import checkpoint  
# 测试语句
from mmdet.apis import inference_detector, init_detector, show_result_pyplot
print("载入成功!")

切换工作目录

import os
os.chdir("/content/drive/MyDrive/mmdetection")
os.getcwd()

修改自己的类别数

修改 mmdet/core/evaluation/class_names.py,return自己的类别
修改 mmdet/datasets/coco.py,将 CLASSES = () 修改成自己的类别。

重新编译

!python setup.py install

我的yolact_r50_1x8_coco.py配置文件如下

_base_ = '../_base_/default_runtime.py'

# model settings
img_size = 550
# num_classes = 11
checkpoint_config = dict(   # Checkpoint hook 的配置文件。执行时请参考 https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py。
    interval=5)  # 保存的间隔是 5。
model = dict(
    type='YOLACT',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=-1,  # do not freeze stem
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=False,  # update the statistics of bn
        zero_init_residual=False,
        style='pytorch',
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        start_level=1,
        add_extra_convs='on_input',
        num_outs=5,
        upsample_cfg=dict(mode='bilinear')),
    bbox_head=dict(
        type='YOLACTHead',
        num_classes=11,
        in_channels=256,
        feat_channels=256,
        anchor_generator=dict(
            type='AnchorGenerator',
            octave_base_scale=3,
            scales_per_octave=1,
            base_sizes=[8, 16, 32, 64, 128],
            ratios=[0.5, 1.0, 2.0],
            strides=[550.0 / x for x in [69, 35, 18, 9, 5]],
            centers=[(550 * 0.5 / x, 550 * 0.5 / x)
                     for x in [69, 35, 18, 9, 5]]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[0.1, 0.1, 0.2, 0.2]),
        loss_cls=dict(
            type='CrossEntropyLoss',
            use_sigmoid=False,
            reduction='none',
            loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.5),
        num_head_convs=1,
        num_protos=32,
        use_ohem=True),
    mask_head=dict(
        type='YOLACTProtonet',
        in_channels=256,
        num_protos=32,
        num_classes=11,
        max_masks_to_train=100,
        loss_mask_weight=6.125),
    segm_head=dict(
        type='YOLACTSegmHead',
        num_classes=11,
        in_channels=256,
        loss_segm=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
    # training and testing settings
    train_cfg=dict(
        assigner=dict(
            type='MaxIoUAssigner',
            pos_iou_thr=0.5,
            neg_iou_thr=0.4,
            min_pos_iou=0.,
            ignore_iof_thr=-1,
            gt_max_assign_all=False),
        # smoothl1_beta=1.,
        allowed_border=-1,
        pos_weight=-1,
        neg_pos_ratio=3,
        debug=False),
    test_cfg=dict(
        nms_pre=1000,
        min_bbox_size=0,
        score_thr=0.05,
        iou_thr=0.5,
        top_k=200,
        max_per_img=100))
# dataset settings
dataset_type = 'CocoDataset'
# declare the classes name
classes = ('Squamous','WBC','Urothelial','UKA','CaOX','RBC','Hyaline','Granular','UA','YEAST','Renal')
data_root = 'data/coco/'
img_norm_cfg = dict(
    mean=[123.68, 116.78, 103.94], std=[58.40, 57.12, 57.38], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(type='FilterAnnotations', min_gt_bbox_wh=(4.0, 4.0)),
    dict(
        type='Expand',
        mean=img_norm_cfg['mean'],
        to_rgb=img_norm_cfg['to_rgb'],
        ratio_range=(1, 4)),
    dict(
        type='MinIoURandomCrop',
        min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
        min_crop_size=0.3),
    dict(type='Resize', img_scale=(img_size, img_size), keep_ratio=False),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(
        type='PhotoMetricDistortion',
        brightness_delta=32,
        contrast_range=(0.5, 1.5),
        saturation_range=(0.5, 1.5),
        hue_delta=18),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(img_size, img_size),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=False),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    samples_per_gpu=8,
    workers_per_gpu=4,
    train=dict(
        classes = classes,
        type=dataset_type,
        ann_file=data_root + 'annotations/train325.json',
        img_prefix=data_root + 'train_img/',
        pipeline=train_pipeline),
    val=dict(
        classes = ('Squamous','WBC','Urothelial','UKA','CaOX','RBC','Hyaline','Granular','UA','YEAST','Renal'),
        type=dataset_type,
        ann_file=data_root + 'annotations/test134.json',
        img_prefix=data_root + 'test_img/',
        pipeline=test_pipeline),
    test=dict(
        classes = ('Squamous','WBC','Urothelial','UKA','CaOX','RBC','Hyaline','Granular','UA','YEAST','Renal'),
        type=dataset_type,
        ann_file=data_root + 'annotations/test134.json',
        img_prefix=data_root + 'test_img/',
        pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4)
optimizer_config = dict()
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.1,
    step=[20, 42, 49, 52])
runner = dict(type='EpochBasedRunner', max_epochs=20)
cudnn_benchmark = True
evaluation = dict(metric=['bbox', 'segm'])


运行python文件训练

!python  tools/train.py  --auto-resume pig_work_dir/yolact/yolact_r50_1x8_coco.py

测试语句

from mmcv.runner import checkpoint  
# 测试语句
from mmdet.apis import inference_detector, init_detector, show_result_pyplot

# print("载入成功!")
# 模型配置文件
config = '/content/drive/MyDrive/mmdetection/work_dirs/yolact_r50_1x8_coco/yolact_r50_1x8_coco.py'
# 模型文件
checkpoint = '/content/drive/MyDrive/mmdetection/work_dirs/yolact_r50_1x8_coco/latest.pth'
# 初始化检测器
model = init_detector(config, checkpoint, device='cuda:0')

# 使用检测器去预测
img = '/content/drive/MyDrive/mmdetection/data/coco/test_img/bd000005.jpg'
result = inference_detector(model, img)

# 查看结果
show_result_pyplot(model, img, result, score_thr=0.3)

防止colab掉线(把这段代码放在控制台)

function ClickConnect(){
  console.log("Working"); 
  document
    .querySelector("#top-toolbar > colab-connect-button")
    .shadowRoot
    .querySelector("#connect")
    .click()
}
 
var id=setInterval(ClickConnect,5*60000)   //5分钟点一次,改变频率把5换成其他数即可,单位分钟
 
 
//要提前停止,请输入运行以下代码:    clearInterval(id)

报错

报错1

AssertionError: The num_classes (3) in Shared2FCBBoxHead of MMDataParallel does not matches the length of CLASSES 80) in CocoDataset

在这里插入图片描述

解决方法

在配置文件中添加类别信息

data = dict(
train=dict(
classes=(‘Squamous’,‘WBC’,‘Urothelial’,‘UKA’,‘CaOX’,‘RBC’,‘Hyaline’,‘Granular’,‘UA’,‘YEAST’,‘Renal’), # 你自己的类别 type=dataset_type,

? …

))

具体如下

data = dict(
    samples_per_gpu=8,
    workers_per_gpu=4,
    train=dict(
        classes = ('Squamous','WBC','Urothelial','UKA','CaOX','RBC','Hyaline','Granular','UA','YEAST','Renal'),
        type=dataset_type,
        ann_file=data_root + 'annotations/train325.json',
        img_prefix=data_root + 'train_img/',
        pipeline=train_pipeline),
    val=dict(
        classes = ('Squamous','WBC','Urothelial','UKA','CaOX','RBC','Hyaline','Granular','UA','YEAST','Renal'),
        type=dataset_type,
        ann_file=data_root + 'annotations/test134.json',
        img_prefix=data_root + 'test_img/',
        pipeline=test_pipeline),
    test=dict(
        classes = ('Squamous','WBC','Urothelial','UKA','CaOX','RBC','Hyaline','Granular','UA','YEAST','Renal'),
        type=dataset_type,
        ann_file=data_root + 'annotations/test134.json',
        img_prefix=data_root + 'test_img/',
        pipeline=test_pipeline))


最后感谢小伙伴们的学习噢~

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-05-18 17:35:34  更:2022-05-18 17:36:04 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/15 13:39:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码