实题操作
1. 三个人独立地去破译一份密码,每人能独立译出这份密码的概率分别为1/5, 1/3, 1/4。则这份密码被译出的概率为(3/5)。
def success():
p = 1/5,1/3,1/4
t = 1
for i in p:
t *= 1-i
return 1-t
print(f'成功概率:{success():.3f}')
2. 甲、乙、丙三人向同一飞机射击,假设他们的命中率都是0.4;又若只有一人命中时,飞机坠毁的概率为 0.2;恰有两人命中时,飞机坠毁的概率为 0.6;若三人同时命中,飞机必坠毁。求飞机坠毁的概率为(202/625)。
p1 = [1-0.4,0.4] # 不中和击种的概率
p2 = [0,0.2,0.6,1.0] # 不同人数击中的坠机概率
p0 = 0 # 初始总概率
for i in range(2):
for j in range(2):
for k in range(2):
t = p1[i] * p1[j] * p1[k] * p2[i+j+k]
p0 += t
print(f'{i} {j} {k} : {p1[i]} * {p1[j]} * {p1[k]} * {p2[i+j+k]:.1f} = {t:.4f}')
import fractions
print(f'\nTotal : {fractions.Fraction(str(0.3232))}')
'''
0 0 0 : 0.6 * 0.6 * 0.6 * 0.0 = 0.0000
0 0 1 : 0.6 * 0.6 * 0.4 * 0.2 = 0.0288
0 1 0 : 0.6 * 0.4 * 0.6 * 0.2 = 0.0288
0 1 1 : 0.6 * 0.4 * 0.4 * 0.6 = 0.0576
1 0 0 : 0.4 * 0.6 * 0.6 * 0.2 = 0.0288
1 0 1 : 0.4 * 0.6 * 0.4 * 0.6 = 0.0576
1 1 0 : 0.4 * 0.4 * 0.6 * 0.6 = 0.0576
1 1 1 : 0.4 * 0.4 * 0.4 * 1.0 = 0.0640
Total : 202/625
'''
3. 甲、乙、丙三人向同一飞机射击,假设他们的命中率分别是:0.4, 0.5, 0.7;又若只有一人命中时,飞机坠毁的概率为 0.2;恰有两人命中时,飞机坠毁的概率为 0.6;若三人同时命中,飞机必坠毁。求飞机坠毁的概率为(229/500)。
继上题,只是3人的命中率不同;代码稍作修改即可:
p1 = [[1-0.4,0.4],[1-0.5,0.5],[1-0.7,0.7]]
p2 = [0,0.2,0.6,1.0] # 不同人数击中的坠机概率
p0 = 0 # 初始总概率
for i in range(2):
for j in range(2):
for k in range(2):
t = p1[0][i] * p1[1][j] * p1[2][k] * p2[i+j+k]
p0 += t
print(f'{i} {j} {k} : {p1[0][i]:.1f} * {p1[1][j]:.1f} * {p1[2][k]:.1f} * {p2[i+j+k]:.1f} = {t:.4f}')
import fractions
print(f'\nTotal : {fractions.Fraction(str(round(p0,5)))}')
'''
0 0 0 : 0.6 * 0.5 * 0.3 * 0.0 = 0.0000
0 0 1 : 0.6 * 0.5 * 0.7 * 0.2 = 0.0420
0 1 0 : 0.6 * 0.5 * 0.3 * 0.2 = 0.0180
0 1 1 : 0.6 * 0.5 * 0.7 * 0.6 = 0.1260
1 0 0 : 0.4 * 0.5 * 0.3 * 0.2 = 0.0120
1 0 1 : 0.4 * 0.5 * 0.7 * 0.6 = 0.0840
1 1 0 : 0.4 * 0.5 * 0.3 * 0.6 = 0.0360
1 1 1 : 0.4 * 0.5 * 0.7 * 1.0 = 0.1400
Total : 229/500
'''
实用模块之类方法函数
小数转分数(以下基本是为了凑字数,不喜勿喷忽略即可)
fractions.Fraction
?| ? ? ?Examples ?| ? ? ?-------- ?| ? ? ? ?| ? ? ?>>> Fraction(10, -8) ?| ? ? ?Fraction(-5, 4) ?| ? ? ?>>> Fraction(Fraction(1, 7), 5) ?| ? ? ?Fraction(1, 35) ?| ? ? ?>>> Fraction(Fraction(1, 7), Fraction(2, 3)) ?| ? ? ?Fraction(3, 14) ?| ? ? ?>>> Fraction('314') ?| ? ? ?Fraction(314, 1) ?| ? ? ?>>> Fraction('-35/4') ?| ? ? ?Fraction(-35, 4) ?| ? ? ?>>> Fraction('3.1415') # conversion from numeric string ?| ? ? ?Fraction(6283, 2000) ?| ? ? ?>>> Fraction('-47e-2') # string may include a decimal exponent ?| ? ? ?Fraction(-47, 100) ?| ? ? ?>>> Fraction(1.47) ?# direct construction from float (exact conversion) ?| ? ? ?Fraction(6620291452234629, 4503599627370496) ?| ? ? ?>>> Fraction(2.25) ?| ? ? ?Fraction(9, 4) ?| ? ? ?>>> Fraction(Decimal('1.47')) ?| ? ? ?Fraction(147, 100) ?| ? ? ?>>> Fraction('8.125') ?| ? ? ?Fraction(65, 8) ?| ? ? ?>>> print(Fraction('8.125')) ?| ? ? ?65/8 ?| ? ? ?>>> print(Fraction(0.125)) ?| ? ? ?1/8
另外解决概率题经常要用到排列、组合函数:
itertools.combinations
Help on class combinations in module itertools:
class combinations(builtins.object) ?| ?combinations(iterable, r) ?| ? ?| ?Return successive r-length combinations of elements in the iterable. ?| ? ?| ?combinations(range(4), 3) --> (0,1,2), (0,1,3), (0,2,3), (1,2,3) ?| ? ?| ?Methods defined here: ?| ? ?| ?__getattribute__(self, name, /) ?| ? ? ?Return getattr(self, name). ?| ? ?| ?__iter__(self, /) ?| ? ? ?Implement iter(self). ?| ? ?| ?__next__(self, /) ?| ? ? ?Implement next(self). ?| ? ?| ?__reduce__(...) ?| ? ? ?Return state information for pickling. ?| ? ?| ?__setstate__(...) ?| ? ? ?Set state information for unpickling. ?| ? ?| ?__sizeof__(...) ?| ? ? ?Returns size in memory, in bytes. ?| ? ?| ?---------------------------------------------------------------------- ?| ?Static methods defined here: ?| ? ?| ?__new__(*args, **kwargs) from builtins.type ?| ? ? ?Create and return a new object. ?See help(type) for accurate signature. ?
itertools.permutations
Help on class permutations in module itertools:
class permutations(builtins.object) ?| ?permutations(iterable, r=None) ?| ? ?| ?Return successive r-length permutations of elements in the iterable. ?| ? ?| ?permutations(range(3), 2) --> (0,1), (0,2), (1,0), (1,2), (2,0), (2,1) ?| ? ?| ?Methods defined here: ?| ? ?| ?__getattribute__(self, name, /) ?| ? ? ?Return getattr(self, name). ?| ? ?| ?__iter__(self, /) ?| ? ? ?Implement iter(self). ?| ? ?| ?__next__(self, /) ?| ? ? ?Implement next(self). ?| ? ?| ?__reduce__(...) ?| ? ? ?Return state information for pickling. ?| ? ?| ?__setstate__(...) ?| ? ? ?Set state information for unpickling. ?| ? ?| ?__sizeof__(...) ?| ? ? ?Returns size in memory, in bytes. ?| ? ?| ?---------------------------------------------------------------------- ?| ?Static methods defined here: ?| ? ?| ?__new__(*args, **kwargs) from builtins.type ?| ? ? ?Create and return a new object. ?See help(type) for accurate signature. ?
还有一个可以取重复值的组合公式,知道的比较少:
tertools.combinations_with_replacement
Help on class combinations_with_replacement in module itertools:
class combinations_with_replacement(builtins.object) ?| ?combinations_with_replacement(iterable, r) ?| ? ?| ?Return successive r-length combinations of elements in the iterable allowing individual elements to have successive repeats. ?| ? ?| ?combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC" ?| ? ?| ?Methods defined here: ?| ? ?| ?__getattribute__(self, name, /) ?| ? ? ?Return getattr(self, name). ?| ? ?| ?__iter__(self, /) ?| ? ? ?Implement iter(self). ?| ? ?| ?__next__(self, /) ?| ? ? ?Implement next(self). ?| ? ?| ?__reduce__(...) ?| ? ? ?Return state information for pickling. ?| ? ?| ?__setstate__(...) ?| ? ? ?Set state information for unpickling. ?| ? ?| ?__sizeof__(...) ?| ? ? ?Returns size in memory, in bytes. ?| ? ?| ?---------------------------------------------------------------------- ?| ?Static methods defined here: ?| ? ?| ?__new__(*args, **kwargs) from builtins.type ?| ? ? ?Create and return a new object. ?See help(type) for accurate signature. ?
|