IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> Numpy中的四个小技巧 -> 正文阅读

[Python知识库]Numpy中的四个小技巧

1. 引言

NumPy是Python中最常用的数据科学库之一。它可以方便地让我们的日常工作变得简单。本文重点介绍Numpy中的四个技巧,熟练掌握这些技巧可以让我们处理数据的方式变得更加高效。
闲话少说,我们直接开始吧!

2. 生成特殊数组

在数据科学、深度学习和线性代数中,通常需要生成特殊的数组,如0和1组成的数组和矩阵,或单位矩阵。

NumPy让上述操作变得非常简单!让我们看看如何使用Numpy来进行编码,如下:

# Creating an array of zeroes
import numpy as np

zeroes = np.zeros(5)
print(zeroes)

# Returns:
# [0. 0. 0. 0. 0.]

上述代码中,我们使用了np.zeros()函数来生成包含零的数组。上述代码创建了一个一维向量。

类似地,我们可以传入其他shape来创建其他一些特殊数组,如下:

# Creating Special Arrays in NumPy
import numpy as np

zeros = np.zeros((2,2))
ones = np.ones((2,2))
identity = np.identity(3)

print(zeros)
print(ones)
print(identity)

# Returns:
# [[0. 0.]
#  [0. 0.]]

# [[1. 1.]
#  [1. 1.]]

# [[1. 0. 0.]
#  [0. 1. 0.]
#  [0. 0. 1.]]

3. 使用where进行条件过滤

函数np.where()主要用于筛选(和替换)数组中的值。这是一个功能强大的函数,它可以非常方便地实现查找和替换操作。

接着,我们先来看一个过滤数据的基本示例:

# Filtering Arrays with NumPy where()
import numpy as np

arr = np.array([1,2,3,4,5,6,7,8])
print(np.where(arr > 5))

# Returns:
# (array([5, 6, 7]),)

类似地,我们可以使用该函数替换满足过滤条件的值。举例如下:

# Replacing Values with NumPy where()
import numpy as np

arr = np.array([1,2,3,4,5,6,7,8])
print(np.where(arr > 5, 1, arr))

# Returns:
# [1 2 3 4 5 1 1 1]

在上面的示例中,我们将要替换满足条件的值传入第二个参数。在第三个参数中,我们传递要用于任何不满足条件的对象的值。

4. 改变矩阵的形状

改变矩阵的形状可能是在NumPy中需要执行的最常见的操作之一。例如,在使用深度神经网络时,需要确保数组具有特定的形状非常重要。与其他示例一样,NumPy让上述操作变得非常简单!

让我们看看如何将一维数组转换为多维矩阵:

# Reshaping a NumPy Array
import numpy as np

arr = np.arange(9)
arr = np.reshape(arr, (3,3))

print(arr)

# Returns
# [[0 1 2]
#  [3 4 5]
#  [6 7 8]]

在上面的示例中,我们使用np.reshape()将一维数组转换为3x3矩阵。

类似地,我们可以使用np.tranpose()函数来将矩阵进行转置,如下所示:

# Transposing an Array in NumPy
import numpy as np

arr = np.array([[1,2,3,4]])
print(f'Original Array: \n{arr}')

arr = np.transpose(arr)
print(f'Modified Array: \n{arr}')

# Returns
# Original Array: 
# [[1 2 3 4]]

# Modified Array: 
# [[1]
#  [2]
#  [3]
#  [4]]

5. 计算唯一值

在最后一节中,我们来学习如何使用函数np.unique()来计算数组中的唯一值。

当然,我们也可以通过传入counts=True参数,此时上述函数将返回一个包含唯一值和计数的元组。

示例如下:

# Counting Unique Values in an Array
import numpy as np

arr = [1,1,1,2,2,1,3,4,5,1,2]

values, counts = np.unique(arr, return_counts=True)
print(values)
print(counts)

# Returns:
# [1 2 3 4 5]
# [5 3 1 1 1]

在上面的示例中,第一个返回的数组按其出现的顺序输出唯一值。第二个包含每个值出现的频率。例如,数组arr中数字1出现了五次!

6. 总结

在本教程中,我们学习了使用NumPy的四种重要方法。同时Numpy库非常庞大,有很多有用的特性。希望本教程能让我们更深入地了解如何有效地使用该库进行日常工作开发。

在这里插入图片描述

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-07-03 10:44:49  更:2022-07-03 10:46:40 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/15 11:32:11-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码