IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> PANDAS初步了解 -> 正文阅读

[Python知识库]PANDAS初步了解

为了学习tensorflow,花了几天时间了解numpy和pandas来做前期准备,并写下博客记录自己的成长

文章目录


前言

如果说tensorflow是机器学习过程中的框架,那numpy&pandas则是他需要使用重要的数据分析工具,虽然tensorflow可以神经网络大部分功能,但是预处理任务,序列化,绘图则需要另外的数据包。


提示:以下是本篇文章正文内容,下面案例可供参考

一、pandas是什么?

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

二、使用步骤

1.引入库

代码如下(示例):

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context = ssl._create_unverified_context

2.读入数据

代码如下(示例):

data = pd.read_csv(
    'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())

3.创建Series以及访问

series是类似一维数组的结构,具有标签以及数据,并且对应着

import pandas as pd
s = pd.Series(['a','b','c','d'],index = ['q','w','e','r'])
print(s)
print(s[1])
print(s['q'])

series的一些返回值?

import pandas as pd
import numpy as np
s = pd.Series(np.random.random(4))
print(s)
print(s.axes)
print(s.empty)
print(s.values)

创建随机series 并且访问指定位置

import pandas as pd
import numpy as np
s = pd.Series(np.random.random(4))
s.head(3)
s.tail(2)

?

4.Dataframe

dataframe是一种表格型数据结构,既有行标签又有列标签


?同 Series 一样,DataFrame 自带行标签索引,默认为“隐式索引”即从 0 开始依次递增

创建dataframe有多种方法,也可以进行计算

import pandas as pd
import numpy as np
#列表直接创建
data = [['a',10],['b',5]]
df = pd.DataFrame(data,columns=['c','v'])
#字典嵌套列表创建
data2 = {'n':['a','b'],'m':[1,2]}
df2 = pd.DataFrame(data2,index = [1,2])
#series创建
data3 = {'one':pd.Series([1,2,3],index = ['a','b','c']),'two':pd.Series([4,5,6],index = ['a','b','c'])}
df3 = pd.DataFrame(data3)
print(df3)
print(df2)
print(df)

print(df3['one'])

#添加series
df3['three'] = pd.Series([7,7,7],index = ['a','b','c'])
print(df3)

#列计算
df3['four'] = df3['three'] + df3['two']
print(df3)
#删除列
del df3['three']
print(df3)


#行操作
print(df3.iloc[2])

row1 = pd.DataFrame([[1,2,3]],columns=['one','two','four'])
df3 = df3.append(row1)
print(df3)

df3.drop(0)

合并dataframe以及删除填充

#合并
import numpy as np
import pandas as pd

df1 = pd.DataFrame({'A':['a','b','c'],'B':['a','b','c'],'C':['a','b','c']},index=[1,2,3])
df2 = pd.DataFrame({'A':['a','b','c'],'E':['a','b','c'],'F':['a','b','c']})
df3 = pd.concat([df1,df2],axis=0)
print(pd.concat([df1,df2],axis=0))

print(pd.merge(df1,df2,on = ['A']))

print(df3.fillna(0))

print(df3.dropna())

?

总结

以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-09-04 01:07:23  更:2022-09-04 01:10:27 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/15 10:36:08-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码