作为反复调用的工具,以免忘记重新造轮子
import numpy as np
def barycenter_coord(triangles2d, point):
linea = triangles2d[1] - triangles2d[0]
a, c = linea[0], linea[1]
lineb = triangles2d[2] - triangles2d[0]
b, d = lineb[0], lineb[1]
ss = a * d - b * c
if abs(ss) < 1e-9:
return [-1, -1, 3, False]
linex = point - triangles2d[0]
k1 = (d * linex[0] - b * linex[1]) / ss
k2 = (-c * linex[0] + a * linex[1]) / ss
k0 = 1 - k1 - k2
return [k0, k1, k2, k0>=0 and k1>=0 and k2>=0]
## 测试代码
for i in range(100):
triangles2d = np.random.random((3, 2))
res = np.random.random(3)
res[0] = 0.3
res[1] = 0.3
res[2] = 1 - res[0] - res[1]
point = res[0] * triangles2d[0] + \
res[1] * triangles2d[1] + \
res[2] * triangles2d[2]
#
# point = np.random.random(2)
# point = np.array([0., 0.5])
res11 = barycenter_coord(triangles2d, point.copy())
pp = res11[0] * triangles2d[0] + \
res11[1] * triangles2d[1] +\
res11[2] * triangles2d[2] - point
print("result=", res11, " pp=", pp, " res11 - res=", np.array(res11[:3]) - res)
|