IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> Python知识库 -> python绘制相关系数热力图 -> 正文阅读

[Python知识库]python绘制相关系数热力图


请添加图片描述
本文讲述如何利用python绘制如上的相关系数热力图

一.数据说明和需要安装的库

数据是31个省市有关教育的12个指标,如下所示。在文章最后自取:

在这里插入图片描述
需要安装如下库:

pip install pandas
pip install matplotlib
pip install seaborn

我感觉在下面这个python package安装比较好
在这里插入图片描述

二.准备绘图

首先导入相关库

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

读取数据

data = pd.read_csv('D:\P\数据分析\相关系数热力图\教育指标.csv')
df = pd.DataFrame(data)
# print(data)

计算出相关系数并输出这里选择的是皮尔逊相关系数,当然你也可以选择其他相关系数有关其他相关系数可以参考这篇文章

cor = data.corr(method='pearson')
print(cor)  # 输出相关系数

因为我这里有中文所以需要进行下面的设置。我这里设置为黑体,当然你也可以选择其他字体

rc = {'font.sans-serif': 'SimHei',
      'axes.unicode_minus': False}
sns.set(font_scale=0.7,rc=rc)  # 设置字体大小

好了,开始绘图啦:

sns.heatmap(cor,
            annot=True,  # 显示相关系数的数据
            center=0.5,  # 居中
            fmt='.2f',  # 只显示两位小数
            linewidth=0.5,  # 设置每个单元格的距离
            linecolor='blue',  # 设置间距线的颜色
            vmin=0, vmax=1,  # 设置数值最小值和最大值
            xticklabels=True, yticklabels=True,  # 显示x轴和y轴
            square=True,  # 每个方格都是正方形
            cbar=True,  # 绘制颜色条
            cmap='coolwarm_r',  # 设置热力图颜色
            )
plt.savefig("我是废强热力图.png",dpi=600)#保存图片,分辨率为600
plt.ion() #显示图片

在这里插入图片描述

三.设置配色,画出多幅图

由于这里的配色是在是有太多太多,所以不打算一个个手动更换,因此我们可以使用循环语句

cmap='coolwarm_r'#在这里更换颜色

colors=“Accent, Accent_r, Blues, Blues_r, BrBG, BrBG_r, BuGn, BuGn_r, BuPu, BuPu_r, CMRmap, CMRmap_r, Dark2, Dark2_r, GnBu, GnBu_r, Greens, Greens_r, Greys, Greys_r, OrRd, OrRd_r, Oranges, Oranges_r, PRGn, PRGn_r, Paired, Paired_r, Pastel1, Pastel1_r, Pastel2, Pastel2_r, PiYG, PiYG_r, PuBu, PuBuGn, PuBuGn_r, PuBu_r, PuOr, PuOr_r, PuRd, PuRd_r, Purples, Purples_r, RdBu, RdBu_r, RdGy, RdGy_r, RdPu, RdPu_r,RdYlBu, RdYlBu_r, RdYlGn, RdYlGn_r, Reds, Reds_r, Set1, Set1_r, Set2, Set2_r, Set3, Set3_r, Spectral, Spectral_r, Wistia, Wistia_r, YlGn, YlGnBu, YlGnBu_r, YlGn_r, YlOrBr, YlOrBr_r, YlOrRd, YlOrRd_r, afmhot, afmhot_r, autumn, autumn_r, binary, binary_r, bone, bone_r, brg, brg_r, bwr, bwr_r, cividis, cividis_r, cool, cool_r, coolwarm, coolwarm_r, copper, copper_r, cubehelix, cubehelix_r, flag, flag_r, gist_earth, gist_earth_r, gist_gray, gist_gray_r, gist_heat, gist_heat_r, gist_ncar, gist_ncar_r, gist_rainbow, gist_rainbow_r, gist_stern, gist_stern_r,gist_yarg, gist_yarg_r, gnuplot, gnuplot2, gnuplot2_r, gnuplot_r, gray, gray_r, hot, hot_r,hsv, hsv_r, icefire,icefire_r, inferno,inferno_r, jet, jet_r, magma, magma_r, mako, mako_r, nipy_spectral, nipy_spectral_r, ocean, ocean_r, pink, pink_r, plasma, plasma_r, prism, prism_r, rainbow, rainbow_r, rocket, rocket_r, seismic, seismic_r, spring, spring_r, summer, summer_r, tab10, tab10_r, tab20, tab20_r, tab20b, tab20b_r, tab20c, tab20c_r, terrain, terrain_r, twilight, twilight_r, twilight_shifted, twilight_shifted_r, viridis, viridis_r, vlag, vlag_r, winter, winter_r”

代码循环画图

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.read_csv('D:\P\数据分析\相关系数热力图\教育指标.csv')
df = pd.DataFrame(data)
# print(data)
################################一行一行读取数据
# for i in range(len(data)):
#     document=df[i:i+1]
#     print(document,'\n')
################################
# 首先计算出相关系数
cor = data.corr(method='pearson')
print(cor)  # 输出相关系数
rc = {'font.sans-serif': 'SimHei',
      'axes.unicode_minus': False}
sns.set(font_scale=0.7,rc=rc)  # 设置字体大小
#设置热力图颜色配色
colors="Accent, Accent_r, Blues, Blues_r, BrBG, BrBG_r, BuGn, BuGn_r, BuPu, BuPu_r, CMRmap, CMRmap_r, Dark2, Dark2_r, GnBu, GnBu_r, Greens, Greens_r, Greys, Greys_r, OrRd, OrRd_r, Oranges, Oranges_r, PRGn, PRGn_r, Paired, Paired_r, Pastel1, Pastel1_r, Pastel2, Pastel2_r, PiYG, PiYG_r, PuBu, PuBuGn, PuBuGn_r, PuBu_r, PuOr, PuOr_r, PuRd, PuRd_r, Purples, Purples_r, RdBu, RdBu_r, RdGy, RdGy_r, RdPu, RdPu_r,RdYlBu, RdYlBu_r, RdYlGn, RdYlGn_r, Reds, Reds_r, Set1, Set1_r, Set2, Set2_r, Set3, Set3_r, Spectral, Spectral_r, Wistia, Wistia_r, YlGn, YlGnBu, YlGnBu_r, YlGn_r, YlOrBr, YlOrBr_r, YlOrRd, YlOrRd_r, afmhot, afmhot_r, autumn, autumn_r, binary, binary_r, bone, bone_r, brg, brg_r, bwr, bwr_r, cividis, cividis_r, cool, cool_r, coolwarm, coolwarm_r, copper, copper_r, cubehelix, cubehelix_r, flag, flag_r, gist_earth, gist_earth_r, gist_gray, gist_gray_r, gist_heat, gist_heat_r, gist_ncar, gist_ncar_r, gist_rainbow, gist_rainbow_r, gist_stern, gist_stern_r,gist_yarg, gist_yarg_r, gnuplot, gnuplot2, gnuplot2_r, gnuplot_r, gray, gray_r, hot, hot_r,hsv, hsv_r, icefire,icefire_r, inferno,inferno_r, jet, jet_r, magma, magma_r, mako, mako_r, nipy_spectral, nipy_spectral_r, ocean, ocean_r, pink, pink_r, plasma, plasma_r, prism, prism_r, rainbow, rainbow_r, rocket, rocket_r, seismic, seismic_r, spring, spring_r, summer, summer_r, tab10, tab10_r, tab20, tab20_r, tab20b, tab20b_r, tab20c, tab20c_r, terrain, terrain_r, twilight, twilight_r, twilight_shifted, twilight_shifted_r, viridis, viridis_r, vlag, vlag_r, winter, winter_r"
color=colors.split(',')
for i in color:
    i=i.strip()
    print(i)
    sns.heatmap(cor,
                annot=True,  # 显示相关系数的数据
                center=0.5,  # 居中
                fmt='.2f',  # 只显示两位小数
                linewidth=0.5,  # 设置每个单元格的距离
                linecolor='blue',  # 设置间距线的颜色
                vmin=0, vmax=1,  # 设置数值最小值和最大值
                xticklabels=True, yticklabels=True,  # 显示x轴和y轴
                square=True,  # 每个方格都是正方形
                cbar=True,  # 绘制颜色条
                cmap=f'{i}',  # 设置热力图颜色
                )
    plt.savefig('图片\\'+f"我是废强热力图颜色{i}.png", dpi=600)  # 保存图片,分辨率为600
    plt.ion()  # 显示图片,这个可以方便后面自动关闭
    plt.pause(0.5)
    plt.close()#关闭图片

全部代码:

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.read_csv('D:\P\数据分析\相关系数热力图\教育指标.csv')
df = pd.DataFrame(data)
# print(data)
################################一行一行读取数据
# for i in range(len(data)):
#     document=df[i:i+1]
#     print(document,'\n')
################################
# 首先计算出相关系数
cor = data.corr(method='pearson')
print(cor)  # 输出相关系数
rc = {'font.sans-serif': 'SimHei',
      'axes.unicode_minus': False}
sns.set(font_scale=0.7, rc=rc)  # 设置字体大小
sns.heatmap(cor,
            annot=True,  # 显示相关系数的数据
            center=0.5,  # 居中
            fmt='.2f',  # 只显示两位小数
            linewidth=0.5,  # 设置每个单元格的距离
            linecolor='blue',  # 设置间距线的颜色
            vmin=0, vmax=1,  # 设置数值最小值和最大值
            xticklabels=True, yticklabels=True,  # 显示x轴和y轴
            square=True,  # 每个方格都是正方形
            cbar=True,  # 绘制颜色条
            cmap='coolwarm_r',  # 设置热力图颜色
            )
plt.savefig("我是废强热力图.png", dpi=600)  # 保存图片,分辨率为600
plt.ion()  # 显示图片
plt.close('all')  # 关闭图片
# 设置热力图颜色配色
colors = "Accent, Accent_r, Blues, Blues_r, BrBG, BrBG_r, BuGn, BuGn_r, BuPu, BuPu_r, CMRmap, CMRmap_r, Dark2, Dark2_r, GnBu, GnBu_r, Greens, Greens_r, Greys, Greys_r, OrRd, OrRd_r, Oranges, Oranges_r, PRGn, PRGn_r, Paired, Paired_r, Pastel1, Pastel1_r, Pastel2, Pastel2_r, PiYG, PiYG_r, PuBu, PuBuGn, PuBuGn_r, PuBu_r, PuOr, PuOr_r, PuRd, PuRd_r, Purples, Purples_r, RdBu, RdBu_r, RdGy, RdGy_r, RdPu, RdPu_r,RdYlBu, RdYlBu_r, RdYlGn, RdYlGn_r, Reds, Reds_r, Set1, Set1_r, Set2, Set2_r, Set3, Set3_r, Spectral, Spectral_r, Wistia, Wistia_r, YlGn, YlGnBu, YlGnBu_r, YlGn_r, YlOrBr, YlOrBr_r, YlOrRd, YlOrRd_r, afmhot, afmhot_r, autumn, autumn_r, binary, binary_r, bone, bone_r, brg, brg_r, bwr, bwr_r, cividis, cividis_r, cool, cool_r, coolwarm, coolwarm_r, copper, copper_r, cubehelix, cubehelix_r, flag, flag_r, gist_earth, gist_earth_r, gist_gray, gist_gray_r, gist_heat, gist_heat_r, gist_ncar, gist_ncar_r, gist_rainbow, gist_rainbow_r, gist_stern, gist_stern_r,gist_yarg, gist_yarg_r, gnuplot, gnuplot2, gnuplot2_r, gnuplot_r, gray, gray_r, hot, hot_r,hsv, hsv_r, icefire,icefire_r, inferno,inferno_r, jet, jet_r, magma, magma_r, mako, mako_r, nipy_spectral, nipy_spectral_r, ocean, ocean_r, pink, pink_r, plasma, plasma_r, prism, prism_r, rainbow, rainbow_r, rocket, rocket_r, seismic, seismic_r, spring, spring_r, summer, summer_r, tab10, tab10_r, tab20, tab20_r, tab20b, tab20b_r, tab20c, tab20c_r, terrain, terrain_r, twilight, twilight_r, twilight_shifted, twilight_shifted_r, viridis, viridis_r, vlag, vlag_r, winter, winter_r"
color = colors.split(',')
for i in color:
    i = i.strip()
    print(i)
    sns.heatmap(cor,
                annot=True,  # 显示相关系数的数据
                center=0.5,  # 居中
                fmt='.2f',  # 只显示两位小数
                linewidth=0.5,  # 设置每个单元格的距离
                linecolor='blue',  # 设置间距线的颜色
                vmin=0, vmax=1,  # 设置数值最小值和最大值
                xticklabels=True, yticklabels=True,  # 显示x轴和y轴
                square=True,  # 每个方格都是正方形
                cbar=True,  # 绘制颜色条
                cmap=f'{i}',  # 设置热力图颜色
                )
    plt.savefig('图片\\' + f"我是废强热力图颜色{i}.png", dpi=600)  # 保存图片,分辨率为600
    plt.ion()  # 显示图片,这个可以方便后面自动关闭
    plt.pause(0.5)
    plt.close()  # 关闭图片

最后:数据链接:,直接点击链接,或复制网址,有提取码
链接:https://pan.baidu.com/s/1qcfw5TUh0c4C6igoipmdGA?pwd=5fii
提取码:5fii
参考链接

https://mp.weixin.qq.com/s/shQOmqR0JXkp_pGCfLuCPA

  Python知识库 最新文章
Python中String模块
【Python】 14-CVS文件操作
python的panda库读写文件
使用Nordic的nrf52840实现蓝牙DFU过程
【Python学习记录】numpy数组用法整理
Python学习笔记
python字符串和列表
python如何从txt文件中解析出有效的数据
Python编程从入门到实践自学/3.1-3.2
python变量
上一篇文章      下一篇文章      查看所有文章
加:2022-09-21 00:24:34  更:2022-09-21 00:25:17 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/26 13:25:11-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计